
The Bologna Project

Technical Architecture

Web Services (WSDL)

 Web Service Description Language

 Specifies data types (e.g. grade, level of studies) and data

structures (e.g. personal data, list of nominated students)

that are used for communication

 This specification can be used for data validation

 Defines messages (built from previously defined data

structures) that are used in methods

 Pair of services for acquiring and publishing information

about HEI’s, HEI agreements, courses, students (personal

data, courses, grades, arrival and departure dates)

 Services for inquiring courses list and validating students ID

UDDI registry

 Universal Description Discovery and

Integration

 Registers universities and their WebService

servers (points to WSDL with service location)

 Search by HEI code or list all universities

 Registry is modified after simple authorization

 Technology: JUDDI 2.0 rc5

 Open source java servlet application

 Requirements: any database, servlet container

UDDI registry (JAXR)

 Java API for XML Registries

 Uniform way to use business registries that are

based on open standards (such as ebXML) or

industry consortium-led specifications (UDDI)

 JAXR API is included in JEE5-compliant

application servers (for example Glassfish)

 The choice of the XML registry does not affect the

application as it is using only the basic JAXR API

WebService Server

 Implements services described in the WSDL

 Responds by acquiring appropriate data (in case

of get… methods) or stores received data

 Generic JEE5 enterprise application

 WebService API is generated from WSDL by wsimport

tool as JAX-WS application (Java API for XML-Based

Web Services) – top-down approach

 Generates JAXB annotated beans (Java Architecture for

XML Binding) – enables conversion between java classes

used in the server application and xml representation

WebService Server (Metro)

 Java classes correspond to data structures

and messages defined in the WSDL

 Generated service endpoint bean defines a

webservice on the web application server

 Metro (open source webservice framework) is part

of the Glassfish Application Server (v2.2) but also

JBoss, Sun AS, Oracle WebLogic

WebService Server (DAO)

 Every pair of methods corresponds to a java
bean that enables access to required data
(data access object) for preparing response
or storing data specific to the chosen method
 There is only one API for DAO beans

 The implementation can be therefore added by
writing new bean and updating the configuration
xml file (DAO beans are injected using Spring)

 The basic DAO loads data as a java class xml
representation from a appropriate file on the disk

WebService Server (Log)

 All received data is stored in the server logs

and added to an array in the server memory

(this part does not recover after shutdown)

 The data logged in the memory can be

viewed on a server web page

 The data is logged as a xml representation

WebService Client

 Java beans responsible for finding the

appropriate webservice server (searching by

receiver’s HEI code) and calling its service

 Can be used by any application to convert

simple method invocation to a webservice

request (e.g. proxy server, web client)

Web Client

 JSF (Java Server Faces) web application

 IceFaces and Ajax enable to write reponse data and error

messages without refreshing the whole page

 Choose the appropriate method from a list and the

universities that act as the caller and the receiver

 The complex data is presented in a clear tabular

form and can be modified

 The input data is loaded from xml test files

depending on the choice of both universities

 It can than be modified before being send

Proxy Client (Java)

 The proxy allows access to database
packages that implement the business logic
(collect data for a response or store the data
in a queuing table)

 The output data from the database
procedures is send over XML-RPC and
converted to a java class on the server side
 XML-RPC allows simple types, maps and arrays

 Other solution is to send a xml-encoded object (in
case of received data, it can be stored directly)

Proxy Server (Python)

 Simple TCP calls from the database forms
are being converted to higher level XML-RPC
calls (that can easily by processed by the
XML-RPC server that is connected to the
webservice client application)

 The proxy translates a xml representation of
the data into a XML-RPC structured form

 That structured data is than converted to a
java class that is used by the webservice
client (and by all java applications)

Generic implementation

 The webservice server and client are JEE5

enterprise applications that can be deployed

on any JEE5-compliant application server

 They act as a generic API that translates java

bean method call to webservice invocation

 The part that depends on the technology used in

on the specific university (the data access) is

managed through java beans that can be easily

added as the server DAO (in place of the XML-

RPC client/proxy used in this implementation)

Security

 The access to the database is controlled and
limited by routing all data queries through a
proxy (over simple XML-RPC protocol)
 That way only the proxy has rights to execute

database packages

 The application access control is managed by
filtering the machines that can call the specified
proxy methods

 The applications are independent of the database
configuration so administration is much easier

Discussion

 Thank you for your attention.

 Questions?

