
University of Warsaw
Faculty of Mathematics, Computer Science and Mechanics

Rafał Nagrodzki
Student no. 219548

The Mobility Project

Master’s thesis
in COMPUTER SCIENCE

Supervisor:

dr Janina Mincer-Daszkiewicz
Institute of Informatics

November 2009

Oświadczenie kierującego pracą

Potwierdzam, że niniejsza praca została przygotowana pod moim kierunkiem i kwa-
lifikuje się do przedstawienia jej w postępowaniu o nadanie tytułu zawodowego.

Data Podpis kierującego pracą

Oświadczenie autora pracy

Świadom odpowiedzialności prawnej oświadczam, że niniejsza praca dyplomowa
została napisana przeze mnie samodzielnie i nie zawiera treści uzyskanych w sposób
niezgodny z obowiązującymi przepisami.
Oświadczam również, że przedstawiona praca nie była wcześniej przedmiotem pro-

cedur związanych z uzyskaniem tytułu zawodowego w wyższej uczelni.
Oświadczam ponadto, że niniejsza wersja pracy jest identyczna z załączoną wersją

elektroniczną.

Data Podpis autora pracy

Abstract

Student mobility becomes a phenomenon of growing scale and importance. It is com-
mon that higher education institutions keep IT infrastructure which enables them to reduce
the amount of work needed to manage all the issues involved in running the studies. How-
ever, the process of exchanging students is carried in a traditional way which engages a lot
of paperwork and communication by phone, fax, e-mail. Thus the process is quite ineffective
and further development of mobility is endangered. It became apparent that tertiary educa-
tion community all across Europe needs a platform which would provide effective electronic
exchange of data in the mobility context.
This thesis presents an effort on creating an infrastructure to support electronic data

exchange facilitating student mobility. The term infrastructure is understood as data for-
mat, architecture and a prototype generic software solution which could be integrated with
IT solutions used at higher education institutions.

Keywords

student mobility, Erasmus programme, SOA, P2P, web services, WSDL, UDDI, data ex-
change, Rich Internet Applications

Thesis domain (Socrates-Erasmus subject area codes)

11.3 Informatics

Subject classification

J. Computer Applications
J.1 Administrative Data Processing - Education
H. Information Systems
H.3 Information Storage and Retrieval
H.3.4 Distributed systems

Contents

1. Introduction . 11
1.1. The Mobility Project . 12
1.2. Basic terms . 13
1.3. Abbreviations . 15
1.4. Overview . 15

2. Related standards . 17
2.1. Europass . 17
2.2. Metadata for Learning Opportunities and its derivatives 17
2.3. SCHAC . 19
2.4. Finnish Virtual University specifications . 21

3. Requirements analysis . 23
3.1. Definitions . 23
3.2. Business processes . 23

3.2.1. Making an agreement . 24
3.2.2. Making nominations . 24
3.2.3. Creating initial LA . 24
3.2.4. Updating LA . 28
3.2.5. Creating ToR . 28
3.2.6. Finalizing mobility . 29

3.3. Requirements specification . 29
3.3.1. Functional requirements . 29
3.3.2. Non-functional requirements . 29
3.3.3. Assumptions . 32

4. Similar projects . 33
4.1. Products of QS unisolution . 33

4.1.1. moveon . 33
4.1.2. moveonnet . 36

4.2. Europass Mobility System . 38

5. Architecture and design . 41

6. WSDL Document . 45
6.1. WSDL standard overview . 45

6.1.1. WSDL . 45
6.1.2. XML Schema . 45
6.1.3. SOAP . 45

3

6.2. Overview . 46
6.3. Conventions . 46
6.4. Vocabulary . 47

6.4.1. Helper types . 47
6.4.2. Identifiers . 48
6.4.3. Personal data types . 51
6.4.4. Organization-related types . 53
6.4.5. Course-related types . 54
6.4.6. Agreement-related types . 56

6.5. Methods . 56
6.5.1. Agreement-independent methods . 57
6.5.2. Agreement-dependent methods . 60

7. Implementation . 65
7.1. Technologies . 65

7.1.1. Apache Tomcat . 65
7.1.2. Spring Framework . 66
7.1.3. Apache Camel . 66
7.1.4. Apache CXF . 66
7.1.5. Apache jUDDI . 66
7.1.6. MySQL . 66
7.1.7. Apache Scout . 66
7.1.8. Apache Qpid . 67
7.1.9. ICEfaces . 67
7.1.10. JavaScript addons . 67

7.2. Tools . 67
7.2.1. NetBeans . 67
7.2.2. Eclipse . 68
7.2.3. Apache Maven . 68
7.2.4. Subversion (SVN) . 68
7.2.5. Liquid XML Studio Community Edition 68
7.2.6. UML . 68
7.2.7. Drawing tools . 68

7.3. Components . 69

8. Summary . 71
8.1. Goals achieved . 71
8.2. Future work . 72

8.2.1. Integration with USOS . 72
8.2.2. WSDL . 72
8.2.3. Implementation . 73

8.3. Acknowledgements . 75

A. Documentation . 77
A.1. Overview . 77

A.1.1. General notes . 77
A.2. Getting started . 78

A.2.1. Installation . 78
A.2.2. Running . 82

4

A.3. Testbed . 82
A.3.1. Modifying requests routing – mobility-server-transport 82
A.3.2. Adding response files to mobility-server-transport 84

A.4. Other tasks . 84
A.4.1. Compilation . 84
A.4.2. Internationalization . 85
A.4.3. Adding sample data files to mobility-client-web 86
A.4.4. Adjusting transport to non-Oracle RDBMS 87
A.4.5. Modifying WSDL . 87

A.5. User’s guide . 87
A.5.1. Mobility Client web interface . 87
A.5.2. Mobility Server web interface . 89

B. DVD Contents . 95

Bibliography . 97

5

List of Figures

2.1. ELM Diploma Supplement Conceptual Model, taken from [SGWV] 20

3.1. Making an agreement . 25
3.2. Making nominations . 26
3.3. Creating initial LA . 27
3.4. Updating LA . 28
3.5. Creating ToR . 30
3.6. Finalizing mobility . 31

4.1. e-agreements workflow, taken from [UNICON] 35
4.2. e-nominations workflow, taken from [UNICON] 36
4.3. e-transcripts workflow, taken from [UNICON] 37

5.1. Architecture of the system . 43
5.2. Nodes in the system . 44

6.1. Overview of WSDL 1.1. Based on: http://en.wikipedia.org/wiki/File:WSDL_
11vs20.png . 46

6.2. internationalizedStringT type . 47
6.3. academicPeriodSinceT type . 48
6.4. addressT type . 48
6.5. errorT type . 49
6.6. agreementIdT type . 51
6.7. localAgreementIdT type . 51
6.8. personalCharacteristicsT type . 52
6.9. employeePersonalCharacteristicsT type 52
6.10. studentPersonalCharacteristicsT type . 53
6.11. organizationDataT type . 54
6.12. subjectAreaCodeT type . 54
6.13. studyCreditsT type . 55
6.14. courseDataT type . 55
6.15. courseInstanceT type . 56
6.16. gradeT type . 56
6.17. Method dependencies . 57
6.18. agreementData type . 58
6.19. subjectAreaAgreement element . 58
6.20. cooperationConditionsT type . 59
6.21. additionalValidationData type . 60
6.22. agreementAndCooperationConditionsContextG group 61
6.23. cooperationConditionsRedundantContextG group 61

7

http://en.wikipedia.org/wiki/File:WSDL_11vs20.png
http://en.wikipedia.org/wiki/File:WSDL_11vs20.png

6.24. nominations element . 62
6.25. studentArrivalDate element . 63
6.26. studentDepartureDate element . 63
6.27. gradeFromCourse element . 64

8.1. WS-Security and its derivatives . 74

A.1. Exemplary testbed . 83
A.2. Web service methods test functionality – getOrganizationData chosen and sam-

ple file loaded into the Request section . 88
A.3. UDDI Registry in view mode . 90
A.4. UDDI Registry in edit mode . 91
A.5. Language hint list facility . 92
A.6. A view of Mobility Server web interface . 93

8

List of Tables

1.1. Total inbound mobility students traffic in tertiary education by host country
[UIS] . 11

1.2. ECTS Grading Scheme . 14

4.1. Moveon usage in chosen countries, based on [UNICON] 34

6.1. Possible values of academicPeriodT type . 48
6.2. ISO-based types . 49
6.3. Example values of organizationIdT type . 49
6.4. Possible values of organizationTypeT type 50
6.5. Example values of nationalPersonalIdT type 50
6.6. Possible values of studyLevelT type . 51

A.1. Auxiliary variable definitions . 77

9

Chapter 1

Introduction

Student mobility becomes a phenomenon of a continually increasing extent and importance.
From Polish and European perspective student exchange is mainly led by Socrates-Erasmus
programme, organized by European Union. Table 1.1 shows the number of incoming mobility
students to several European countries.

Host country
Year

2005 2006 2007

France 236 518 247 510 246 612
Italy 44 921 49 090 57 271
Poland 10 185 11 365 13 021
UK 318 399 330 078 351 470

Table 1.1: Total inbound mobility students traffic in tertiary education by host country [UIS]

In Europe as a whole, this undertaking involves now over 4000 higher education institu-
tions while the number of participating students approaches two million [ECERA]. The Euro-
pean Commission introduced the new Lifelong Learning Programme which is aimed to further
stimulate mobility and achieve a number of 3 million Erasmus students by 2012. Therefore
it becomes an important part of HEIs’ activity. Important also in a sense of the amount of
administration work needed.
Currently, the vast majority of higher educational institutions is equipped with IT in-

frastructure which enables them to keep all the necessary data needed to run the studies,
i.e. personal data, learning achievements data, accounting, etc. The process of exchanging
the necessary data in order to actually perform the student exchange is carried in a manual
way, i.e. employees from local International Relations Office contact with their counterparts
at the partner’s IRO through traditional mail, e-mail, fax. Details of mobility conditions are
discussed, lists of students along with their study history get exchanged. That data needs to
be entered to local IT system in order to render an id card to the guest student which is often
the only way to let the guest student be recognized as a full member of local student soci-
ety. Otherwise, their grades would not be recorded, access to library would not be granted,
etc. After mobility period transcripts of records need to be issued in order to let the home
institution recognize the progress of its students at the partner HEI.
All these cases of data exchange involve making a physical copy (usually a printout)

of the data from the home institution and entering it to the partner system. This procedure

11

is carried by humans which tend to err, especially when handling texts in foreign languages.
If the source of data is a form filled by hand, the copy process is even less reliable and error-
prone. The result is that the quality of data kept in the local database suffers. The most
common issue is for instance that the same person is visible to the system as two different
individuals.
This manual procedure has another side effect which one cannot disregard. Namely, mobil-

ity initiatives may look to the potential participants less attractive because of the amount of
bureaucracy involved. It may become a significant obstacle in further and larger cooperation
in the mobility area.
A pretty obvious idea that instantly emerges when one considers how to improve this

situation is to make those IT study-oriented systems talk to each other and perform necessary
data exchange. That certainly would greatly simplify the whole process and make it much
more reliable and less error-prone.
In general, every single higher educational institution has its own specific system and stores

custom data in a custom format. The main problem to solve is to identify the most com-
mon subset of information needed to successfully conduct the student exchange and design
the data formats used in transmission. There are on-going initiatives aiming to develop stan-
dards covering various aspects of student mobility, e.g. CENWorkshop on Learning Technolo-
gies [CENWSLT] and RS3G [RS3G] joint work. Yet there is no official or unofficial standard
regarding electronic data exchange in the context of mobility scenarios.
Carried by a will to fill this hole, two European Higher Education consortia – Polish MUCI

[MUCI] and Italian CINECA [CINECA] – initiated the Mobility Project: an agreement upon
cooperation in developing a prototype which could eventually evolve into a mature standard
equipped with a reference implementation [AMDR09]. The described package would then be
easily adopted by other HEIs in Europe. There is, however, no intention to limit the scope to
the Erasmus programme only; on the contrary, the idea is to try to come up with a solution
generic enough to be suitable for the entire academic world. The work presented in this
document is just a one step on a way to achieve this goal.

1.1. The Mobility Project

Although the Mobility Project has initially been started by MUCI and CINECA, the idea
gathered substantial number of other organizations interested in it. As of November 2009,
the Mobility Project gathered following participants:

� University consortia (Student information management system providers):

– OODI, Finland,

– SIGMA, Spain,

– CINECA, Italy,

– Ladok, Sweden,

– FS, Norway,

– MUCI, Poland,

– HIS, Germany,

– SURF, Netherlands,

– Almalaurea, Italy,

– VHS, Sweden.

12

� Individual universities:

– University of Stuttgart, Germany,

– University of Malaga, Spain,

– University of Thessaloniki, Greece,

– University of Porto, Portugal,

– University Fernando Pessoa, Portugal.

� Companies:

– Digitary, Ireland,

– AcademyOne, USA,

– KION, Italy,

– QS unisolution, Germany.

The first official meeting of the participants took place during workshop of RS3G which
was held in Uppsala, 16-17 November 2009 [RS3GWS].

1.2. Basic terms

Here come the explanations of some basic terms related to the problem domain.

ECTS (European Credit Transfer and Accumulation System) – a standard for com-
paring the study attainment and performance of students of higher education across
the European Union and other collaborating European countries.

ECTS Information Package/Course Catalogue – the primary guide for all students
attending the institution, contains information about the qualifications offered, the
teaching, learning and assessment procedures, the level of programmes, the single edu-
cational components and the learning resources available to students, institutional or
departamental/subject level tutor names with contact information – a detailed check-
list of the recommended contents of this document is provided in the ECTS Users’
Guide [ECTSUG]; the document should be easily accessible and the recommended way
of fulfilling this requirement is to publish it on the institution’s website in English.

ECTS credits – a measure of the student effort required for completing a course; one credit
corresponds to 25 to 30 hours of lectures, classes, etc.

ECTS Grading Scheme – a common grading scheme imposed by ECTS, used for the
purpose of credit transfer occurring when the student completes the study programme
and returns from a partner HEI to the home HEI; particularly used in ToR documents;
the scheme is shown in Table 1.2.

National Agency – an agency which coordinates mobility programmes organized by the
European Union (grant distribution, statistics collection).

International Relations Office – an organizational unit of a HEI which is responsible for
cooperation with foreign partner organizations on student and staff mobility, internships
and staff trips.

13

ECTS grade Definition

A Excellent: outstanding performance with only minor errors
B Very good: above the average standard but with some errors
C Good: generally sound work with a number of notable errors
D Satisfactory: fair but with significant shortcomings
E Sufficient: performance meets the minimum criteria
FX Fail: considerable further work required before credit can be awarded
F Fail: considerable further work is required

Table 1.2: ECTS Grading Scheme

Learning Agreement – a document which defines courses chosen by a student for their
mobility period.

Student information management system – IT system which is used at higher educa-
tional institution (or wider – educational institution) with purpose of facilitating its
usual tasks including organization of classes for students, storage of students achieve-
ments, financial matters (stipends, payments), etc.

Transcript of Records – a document issued by a HEI containing study achievements of a stu-
dent.

USOS (Uniwersytecki System Obsługi Studiów) – SIMS used at the University of War-
saw.

USOSweb – a publicly accessible website enabling students and lecturers to access infor-
mation gathered in USOS.

Organizations which are referred to in this paper:

CEN (the European Committee for Standardization) – a non-governmental organi-
zation dedicated to development of European Standards (ENs) and other technical
specifications; it is officially recognized as a European standards body by the European
Union – its standards are also national standards in each of its 30 members [CEN].

RS3G (Rome Student Systems and Standards Group) – a self-established group of
software implementers and stakeholders in the European Higher Education domain
which is focused on contributing to the definition and adoption of electronic standards
for the exchange of student data between HEIs [RS3G].

Cedefop (The European Centre for the Development of Vocational Training) –
the European Agency founded to promote the development of vocational education
and training (VET) in the European Union by providing information on and analyses
of vocational education and training systems, policies, research and practice.

Cedefop’s tasks are to:

� compile selected documentation and analyses of data,

� contribute to developing and coordinating research,

� exploit and disseminate information,

14

� encourage joint approaches to vocational education and training problems,

� provide a forum for debate and exchanges of ideas [CEDEFOP].

Other terms:

Dublin Core – a general-purpose standard, developed by DCMI [DCMI], for cross-domain
information resource description, e.g. video, sound, image, text but also composite ob-
jects, e.g. web pages; although implementations usually utilize XML and are Resource
Description Format based, Dublin Core is syntax independent; its element set is stan-
dardized by ISO (ISO 15836) [WIKIPEDIA].

Application profile – “a set of metadata elements, policies, and guidelines defined for a par-
ticular application. The elements may be from one or more element sets, thus allowing
a given application to meet its functional requirements by using metadata from sev-
eral element sets including locally defined sets. For example, a given application might
choose a subset of the Dublin Core that meets its needs, or may include elements from
the Dublin Core, another element set, and several locally defined elements, all combined
in a single schema. An Application profile is not complete without documentation that
defines the policies and best practices appropriate to the application” [DCMIG].

Moreover, I use adjectives “home” and ”partner” with reference to institutions partici-
pating in mobility experience in the following meaning:

home – denotes institution which sends its students; a sending institution,

partner – denotes institution at which mobility students arrive and stay for a study during
mobility; a host institution.

1.3. Abbreviations

Abbreviations used throughout this thesis are listed below.

HEI – higher educational institution.

LA – Learning Agreement.

ToR – Transcript of Records.

SIMS – student information management system.

IRO – International Relations Office.

ECTS IP/CC – ECTS Information Package/Course Catalogue.

1.4. Overview

The remainder of this thesis is organized as follows. In the next chapter, several relevant exist-
ing or under-development standards are enumerated and thoroughly described from the per-
spective of their applicability and reuse in data exchange format definition. Chapter 3 con-
tains detailed requirements description and analysis. Projects which solve a similarly scoped
problem to the one stated in the thesis are presented in Chapter 4. Chapter 5 is devoted to
the architecture and design of the developed software system, while Chapter 6 concentrates on

15

the XML Schema data format definition for the web service used by the system. In Chapter 7
various aspects of the implementation of the system are presented. The last chapter contains
the summary and a deeper insight into possible directions which the Mobility Project may
take in the near future.
The thesis is supplied with two appendices: Appendix A provides a comprehensive docu-

mentation of the software, whereas Appendix B lists the contents of a DVD media attached
to the thesis.

16

Chapter 2

Related standards

When considering a data format for a specific application it is always vital to review existing
and currently emerging standardization efforts in the problem area and consider their actual
applicability and whether it is possible to reuse the ideas and approach. In this chapter several
related standards are presented.

2.1. Europass

Cedefop came up with an initiative of Europass. Europass is a set of five documents (CV,
Language Passport, Certificate Supplement, Diploma Supplement, Mobility) which are in-
tended to ease the communication of personal skills and competences in the European job
market.
From the point of view of the problem stated, the most interesting documents in the cata-

logue are CV and Mobility, as these two attempt to cover areas of personal data and mobility
records. Although these standards are pretty mature and are endorsed by EU, they do not
match the requirements. That’s because these documents serve as a record of past events
and the range of detail is not appropriate since the main appliance of Europass is mostly con-
nected with an activity of applying for a study or a job and prepared documents are intended
to serve as a generic basis for generation of office documents (such as Microsoft Office doc,
Open Document or PDF file) which would look attractive when printed. There are online ed-
itors and generators of Europass CVs like for instance SmartCV (http://www.smartcv.org/).
At the time of writing, Cedefop has invented XML vocabulary for CV and Language

Passport [EPXSD] only; the Mobility document XML Schema is currently just a draft
[EPMOBXSD]. Although the Mobility document schema contains some useful definitions
regarding grades, subject area classification, academic periods, etc., these constructs are ac-
tually tied to the ECTS environment and could not be directly used. Nevertheless, this kind
of vocabulary is generally necessary in the Mobility Project.
Cedefop has delegated implementation of a distributed system facilitating exchange of Eu-

ropass documents – refer to Section 4.2 for more information.

2.2. Metadata for Learning Opportunities and its derivatives

Metadata for Learning Opportunities Metadata for Learning Opportunities (MLO)
[MLO], developed by CEN Workshop on Learning Technologies (CEN WS/LT), are an at-
tempt to provide a standard for representation of course and learning opportunity informa-
tion. It originated on a basis of the Bologna process, which main intention is making higher

17

http://www.smartcv.org/

education more comparable and compatible, therefore creating the European Higher Educa-
tion Area. MLO focuses on needs of HEIs (study offerings, mobility), learners and employers
but it also takes other potential stakeholders into account, for example:

� aggregators of learning opportunities such as:

– PLOTEUS (Portal on Learning Opportunities throughout the European Space) –
http://ec.europa.eu/ploteus/home.jsp,

– HotCourses – www.hotcourses.com,

– FastTomato – www.fasttomato.com,

� providers of value-added services (guidance, advice) like:

– UCAS – http://www.ucas.ac.uk/,

– Graduate Prospects – http://www.prospects.ac.uk/.

All above organizations would benefit from better consistency and availability of course
information. The same also applies to other governmental and non-governmental agencies
performing benchmarks and quality assurance of learning offerings.
Metadata for Learning Opportunities intends to contribute to the consolidation of Euro-

pean transparency documents, harmonize the application process, support analysis, quality
evaluation, benchmarking and monitoring of learning opportunities and by making the in-
formation more consistent and available – enable new entrants to the market, e.g. Web 2.0
services.

ECTS IP/CC MLO Application Profile A MLO’s derivative – ECTS IP/CC MLO
Application Profile [MLO-AP] – facilitates representation of the ECTS Information Pack-
age/Course Catalogue (ECTS IP/CC), a core Bologna process document. The standard
specifies refinements to the Metadata for Learning Opportunities (MLO) Information Model
and technically it is defined as a set of properties and resources drawn from vocabularies
of the Dublin Core element set [DCES].
ECTS IP/CC document is intended to serve as a primary source of information for mobile

students and staff. The document lists the study programmes, course units and modules avail-
able at a certain HEI as well as other practical information regarding studying, procedures,
living conditions, etc. The document itself does not have a defined format, it merely should
cover all the items mentioned in the checklist provided in the ECTS Users’ Guide [ECTSUG].
The Guide strongly encourages to make the document easily available on a HEI’s website.
Although MLO does not define an XML representation, it is possible to translate Dublin

Core conceptual world to XML world. There are actually two ways of doing that. The first,
being an official recommendation of Dublin Core Metadata Initiative [DCMI] – the creator
of Dublin Core metadata standard, is DC-XML-2003 [DCXML2003]. It has some limitations
as its model is simpler than the Dublin Core Abstract Model. The other – DC-DS-XML
[DCDSXML] – supports all the features of the description set described by the DCMI Abstract
Model but its current status is no more than “proposed recommendation”.

European Learner Mobility The main scope of this forthcoming standard, developed
by CEN WS/LT, is to be “a data model for the expression and exchange of European
Learner Mobility information, as defined by the European transparency instruments” [ELM].

18

http://ec.europa.eu/ploteus/home.jsp
www.hotcourses.com
www.fasttomato.com
http://www.ucas.ac.uk/
http://www.prospects.ac.uk/

In other words, the effort is put towards enabling IT systems in Europe to exchange Eu-
ropass related information. At current, initial phase, the main attention is drawn to describe
the Diploma Supplement document. The ELM project also aims to provide the vision and
prepare the grounds “for the further development, augmentation and exploitation of trans-
parency information that will lead to the implementation of valuable services to the commu-
nity (e-portfolio, learning and employment opportunity exploration, etc.)” [SGWV].
The overall goals of the project include:

� improve European-wide adoption of electronic transparency documents and therefore
improve data consistency,

� support the development of IT systems facilitating the Bologna process,

� support quality assurance and data quality management in the European higher edu-
cation area,

� support wider availability of brokerage services.

European Learner Mobility is intended to build on MLO specification through an appli-
cation profile approach. An application profile is understood here according to the definition
found in [CWA15555] which states:

“An application profile is an assemblage of metadata elements selected from one or more
metadata schemas and combined in a compound schema. The purpose of an application pro-
file is to adapt or combine existing schemas into a package that is tailored to the functional
requirements of a particular application, while retaining interoperability with the original
base schemas”.

It is quite similar to the definition used by DCMI which is cited in Section 1.2.
Although the project is still in its first steps, the current outcome has been submitted

as an Enquiry Draft for a European Norm (EN) on an Europass DS interoperability. The
specification recommendation is expected before the end of 2009 [SGWV] but at the time of
writing this did not happen.

Summary Considering MLO and its Application Profile in the Mobility Project, it does
not appear to be directly applicable. The most important argument is that MLO addresses
quite divergent purposes – it aims at exchanging learning opportunities data only. Although
the model serves the purpose of describing courses and credits awarded for them, the model
is not sufficient because agreements, LAs and ToRs need to be described but these are not
in the scope of the standard. Furthermore, in case of the Mobility Project some of the con-
structs are actually obsolete. Besides that, it is not completely clear how to use these speci-
fications with some standard language (e.g. XML) due to the lack of a suitable specification.
It is, however, apparent that these standards have their place in the image of higher

education and a high level of interoperability between the models behind the transparency
documents and formats intended to convey the mobility data would be greatly desired and ap-
preciated.

2.3. SCHAC

SCHAC (SCHema for ACademia) [SCHAC] is the result of work carried by TERENA (Trans-
European Research and Education Networking Association), an organization associating

19

Figure 2.1: ELM Diploma Supplement Conceptual Model, taken from [SGWV]

20

members of research and education community willing to collaborate on development of In-
ternet technology, infrastructure and services. The standard is intended to “promote com-
mon schemas in the field of higher education to facilitate interinstitutional data exchange”
[SCHAC]. SCHAC is not tied to any particular technology, although at its current level it pro-
vides an appropriate LDAP profile. There is also an XML profile expected to be released in
the near future.
SCHAC is a work-in-progress standard which currently supports description of persons

and organizations, so it is currently unsuitable to describe student exchange, their achieve-
ments, etc. However, it appears as a good starting point, because it conveys some conven-
tions and ideas which seem especially attractive. First of all, SCHAC consequently implements
a concept of a unique identifier. For example schacPersonalUniqueID attribute has a form of
urn:mace:terena.org:schac:personalUniqueID:<country-code>:<idType>:<idValue>.
It is quite clear that this form easily enables users of the standard to uniquely identify a per-
son with their national identification number which can possibly equal for different persons
in two countries but the national prefix comes to help.
Another important feature of SCHAC is that it utilizes ISO standards whenever possi-

ble. The <country-code> part from the last example is coded as an ISO 3166-1-alpha-2
[ISO3166] country code identifier or the string int.
One disadvantage of SCHAC’s definitions is that they lack a hierarchy and therefore do not

promote reuse of already defined constructs. Although the intention of SCHAC creators was
not to tie it to any specific technology, it did not actually abandon the heritage of some LDAP-
oriented standards which served as a point of reference for SCHAC on its way to satisfy the
needs of European Higher Education environment. These standards are eduPerson/eduOrg
[EDUPER] and inetOrgPerson [RFC2798]. EduPerson/eduOrg specifications were designed
to provide a pattern for building general-purpose institutional directories at HEIs, whereas
inetOrgPerson targeted a more general problem of describing a person in its organizational
context.
It is worth to note that the format of attribute values is in several cases a bit bloated, for in-

stance the already mentioned attribute schacPersonalUniqueID contains a considerable con-
stant part (prefix). Long prefixes are also present in schacHomeOrganizationType, schac-
PersonalPosition, schacPersonalUniqueCode and schacPersonalUniqueID attributes.
SCHAC’s concept of handling surnames does not seem as a particularly fortunate one.

The standard distinguishes two-part surnames by two attributes schacSn1 and schacSn2.
An exemplary Polish double surname Górecka-Wolniewicz is coded as [schacSn1: Wolniewicz],
[schacSn2: Górecka] but a Spanish example of Lopez de la Moraleda y de Las Altas Alcur-
nias is handled differently, i.e. parts are mapped in a different order: [schacSn1: Lopez de
la Moraleda], [schacSn2: de Las Altas Alcurnias]. Apart from that the information about
a hyphen in Polish and “y” in Spanish is lost.
SCHAC has been reused by some local standards, for example Australian auEduPerson

[AUPWG] or Spanish irisEduPerson [IEP].

2.4. Finnish Virtual University specifications

Finnish Virtual University (FVU) is a partnership of all 21 Finnish universities. In order to
strengthen national collaboration and improve on the student mobility, FVU defined a set
of 4 specifications [FVUSPEC] approved by its members:

� M0: Study Rights Data (currently not available in English),

21

� M1: Degree, Study Module and Course Unit Data,

� M2: Course Unit Realisation Data,

� M3: Credits Data.

The project is pretty mature – the documents reached version at least 1.0 and they
have not been modified since September 2006.
The specifications provide vocabulary to describe degrees, course units along with their

dependencies, rules describing evaluation of student achievements, credits awarded for com-
pleting a course or study unit. The structures mirror the common model (degree programmes,
specializations, study modules, free study modules) used by all Finnish HEIs which support
a national programme called JOO studies. JOO is an acronym for Finnish phrase meaning
“flexible study right” and this programme permits both undergraduate and postgraduate
students to apply to take courses at other Finnish universities, provided that those courses
are approved options within the student’s degree program.
The Finnish standard makes some use of external norms (ISO 639, ISO 8601 [ISO8601])

but its particular weakness is that in numerous cases it allows values in free text which
radically hardens automated processing of such data.
The format itself is actually abstract – the documents containing the description of the stan-

dard contain a notion of an “XML binding” but the actual XML representation is not supplied
(at least in the documentation available in English).
Due to the above characteristics of FVU format and the fact that the model of a study

introduced is tied to Finnish conditions, they are not of much straightforward use in the Mo-
bility Project.

22

Chapter 3

Requirements analysis

3.1. Definitions

Here come the basic terms used to describe entities existing in mobility area. Some of them
were identified by M. Krawczyński in his master’s thesis [Kra06] documenting his effort on
a USOS module which was designed specifically for local IRO at the University of Warsaw
for mobility purposes. The list contains:

� agreement – an arrangement between two organizations which defines rights and obli-
gations of the parties; in the context of mobility it describes:

– numbers of students accepted by the parties,

– requirements on these students such as study subject area and study level,

– duration of mobility period,

� cooperation conditions – a part of an agreement regarding one specific field of study,
study level and mobility duration,

� administrative coordinator – a person who is responsible for proper execution of deci-
sions contained in an agreement,

� institutional coordinator – a person who is in charge of signing an agreement between
two HEIs – usually a chancellor of university.

3.2. Business processes

This section contains business processes occurring at a HEI. The scenarios were discovered
in a process of interviewing Ms. Klementyna Kielak, a representative of IRO held at the Uni-
versity of Warsaw. The information gained this way was supplemented with the insight of de-
velopers of USOS modules dedicated to handling mobility data [Kra06], [Lom08].
The core description is modeled in UML diagrams supplied. However, they would not be

clear enough without a few words of additional commentary. Some details were omitted in
the diagrams in order not to obscure the main outline.

23

3.2.1. Making an agreement

An initiative for making an agreement between two HEIs usually comes from interinstitutional
research contacts and cooperation of research employees. The task of conducting the negoti-
ations belongs to the duties of International Relations Office, so research employees contact
the IRO which takes control of the issue. The situation described constitutes an entry point
to the further procedure of making an agreement shown in Figure 3.1.
IRO representatives from both institutions discover other such intentions of cooperation

on both sides and negotiate the agreement. The range of an agreement comprises (among
other) subject area settings, levels of study with numbers of exchanged students, mobility
duration. Finally, when the agreement is ready, a representative of one of the HEIs involved in
the process prepares an official agreement document signed by the person entitled and sends
it to the other HEI. The document gets signed and returns to its creator.

3.2.2. Making nominations

The process of nominating students (illustrated in Figure 3.2) starts with a recruitment phase
driven by the faculties which begins right after the deadline for agreements in the current
cycle. This deadline is scheduled by the National Agency. The recruitment phase is driven by
the faculty recruitment commission which collects students’ applications for mobility offers
presented by the administrative coordinator.
When the commission gathers the applicants, the home coordinator sends the list of nomi-

nations to the partner IRO, partner coordinator and reports some aggregate data on the num-
bers of students nominated with mobility periods expected.
The partner coordinator informs the students nominated about the admission procedure.

If some of the students fail to qualify, the vacancies may be taken by the applicants from
the reserve list, unless it does not exist (it depends on the procedure at home HEI).
If there are still some available places for students, the home IRO announces an additional

recruitment phase (unless it does not get permission from the authorities of the respective
faculty). This phase significantly differs from the previous one because the students applying
during it will not be granted with a mobility stipend.
The procedure has to finish by the turn of February and March – a deadline imposed by

the National Agency. However, even after the deadline the list of nominated students may
still slightly change.

Civil contract

The students qualified for a mobility programme need to sign a civil contract with their home
HEI. The contract obliges a student to arrive at the partner HEI, study and pass the exams
while the home HEI is obliged to recognize the achievements acquired at the partner HEI
and pay the stipend on time.

3.2.3. Creating initial LA

A student who eventually succeeded to qualify for a mobility is required to choose courses from
the partner catalogue (presumably using the ECTS IP/CC document issued by the partner
HEI) which they decide to take, i.e. they define their LA.
At the University of Warsaw, students are asked to enter the courses of their choice into

a form available through USOSweb. Next, the coordinator reviews the input from students

24

Figure 3.1: Making an agreement

25

Figure 3.2: Making nominations

26

and either accepts it or asks them to correct their LAs. Accepted LAs get locked by the coordi-
nator, students print their LAs and have them signed by the coordinator (unless the signature
is not required by the partner HEI). Finally, students submit their paper LAs to the partner
student’s office.

Figure 3.3: Creating initial LA

27

3.2.4. Updating LA

Even despite the greatest care from students and coordinators at both HEIs, there are often
cases when students need to change their LA. It may happen when the course is removed
or the actual language of the course is different than expected.
A student contacts with their home coordinator stating the issue; the coordinator unlocks

the LA so the student can make the corrections and locks it again afterwards. The student
prints the new LA and submits it to the partner HEI. Figure 3.4 presents this procedure.

Figure 3.4: Updating LA

3.2.5. Creating ToR

A partner HEI issues the ToR document right after the mobility period of a student ends.
Actually, two copies are prepared: one for the student themselves (precisely, many HEIs offer
to send that copy to the address specified by the student and therefore they do not force
the student to withdraw the document at the student’s office) and the second for the IRO

28

of student’s home HEI.
The copy for the student is intended to serve as a source of grades which are to be trans-

ferred to the student’s records according to the “ECTS to local grade” mapping established
by the student’s home HEI. Any information about local grades is completely ignored.
The ToR instance sent to the IRO of student’s home HEI is used to provide the statis-

tical data demanded by the National Agency about achievements of students expressed in
the ECTS Grading Scheme. The document is also stored in the student’s files as a proof
of participation in the mobility programme.
A diagram of the whole process is presented in Figure 3.5.
It may happen that the ToR needs to be reissued. Such situation occurs for example

when a student improves their grade during the second examination which usually occurs
after the mobility period or simply due to a mistake. The procedure of issuing the updated
ToR is analogous.

3.2.6. Finalizing mobility

The stipends for mobility students are intended to be granted in an amount which exactly
reflects their stay period. As the first approximation the dates defined in the civil contract
(mentioned in the Subsection 3.2.2) between a student and their home HEI are taken. Stu-
dents, however, do not arrive at and leave the partner HEI exactly on that dates. At the end of
the mobility period both actual dates are known and it is possible to do the final accounting.
These dates are included in the document called “Letter of Confirmation” or “Confirma-

tion of Stay” which is issued to a student by the partner HEI when the student is about
to leave. The document needs to be presented at the home IRO and faculty. The home IRO
resolves the financial issues. The final accounting has to be done ultimately usually by the end
of August.

3.3. Requirements specification

3.3.1. Functional requirements

1. Provide necessary infrastructure for electronic data exchange over network between
HEIs participating in student mobility programmes:

(a) according to the use cases identified in Section 3.2,

(b) the solution can be easily integrated with SIMS; it interoperates with SIMS in such
a way that it does not require manual data entry more than once (the data is en-
tered into SIMS only),

(c) the data may be modified and exchanged multiple times.

2. Users must be authenticated.

3. The system should be testable with exemplary data; it should be possible to perform
experimental transmissions without full integration with local SIMS.

3.3.2. Non-functional requirements

1. Data exchange format should be generic, i.e. facilitate the data exchange not only
in terms of Erasmus programme but mobility programmes in general.

29

Figure 3.5: Creating ToR

30

Figure 3.6: Finalizing mobility

2. Software should act as a complete, generic node being able to carry out transmission
on its own.

3. Solution should be scalable.

4. Transport middleware should be highly vulnerable to transport data format changes,
i.e. modification of the data format should have possibly minimal impact on the source
code, ideally such operation would require no changes at all.

5. Data transmission must be secure, i.e. it cannot be intercepted and/or modified, data
integrity must be preserved.

6. Consider personal data exchange legal concerns.

7. Software should be relatively easy to install and maintain.

31

8. Tools and technologies used to implement the software should be:

(a) freely available; preferably licensed in a way which allows redistribution – ideally
the licenses should be open source compatible,

(b) maintained and widely used; with strong, active community,

(c) independent of any specific OS or hardware architecture.

Non-functional requirements specific to the University of Warsaw

1. Software should be capable of communicating with Oracle Database 11g by supporting
PL/SQL procedure calls and Oracle Advanced Queuing (Oracle AQ).

3.3.3. Assumptions

1. IT systems of HEIs have access to a common, public network – the Internet.

2. Number of nodes communicating may (and certainly will) change in time, some of them
may be temporary unavailable.

3. A node may contact any other node in the system but typically it does not contact all
the other nodes.

32

Chapter 4

Similar projects

This chapter describes two commercial solutions which are aimed at supporting the proce-
dures which HEIs need to take between each other in order to successfully exchange mobility
students.

4.1. Products of QS unisolution

4.1.1. moveon

Overview

QS unisolution is a company which emerged as a union of unisolution – a company grown
on experience and work of two members of IRO at Technical University Darmstadt and QS –
a company targeted at linking graduates, business schools, universities and employers in order
to help with education and career-related decisions as well as recruiting the most promising
graduates.
QS unisolution offers a commercial product called moveon, intended to fully aid in the field

of international relations management. Moveon is an integrated system which is advertised
as a complete solution for administration and management of international cooperations
and exchange programmes. It supports following tasks:

� planning and organization of agreements and cooperations,

� marketing of the institution and its offer,

� daily activities connected to the mobility process,

� collecting statistical data in order to conduct analyses,

� generating reports for National Agency.

Moveon is currently being used by about 300 higher education institutions mainly in Eu-
rope – see Table 4.1 for moveon usage statistics per country. The software is available in 5 lan-
guage versions.
Moveon acts as a stand-alone web application which is accessible for both HEI repre-

sentatives and students. It is possible to customize moveon interface to resemble the layout
and style of existing web applications and sites served by a HEI.
Functionality is divided into 3 so-called e-procedures: e-nominations, e-agreements, e-

transcripts. For all the procedures moveon acts as a central place of the whole process –

33

Country No. institutions using moveon

Belgium 9
France 94
Germany 140
Spain 9
Sweden 11
Switzerland 7
Turkey 3

United Kingdom 7

Table 4.1: Moveon usage in chosen countries, based on [UNICON]

neither of the cooperating HEIs can directly reuse the data from their SIMSes. The data
need to entered by students and IRO representatives through publicly available web interface.
All communication about events which occur in the system is carried via e-mail (generated
from templates).
As regards integration, any data needed for mobility have to be either entered manu-

ally by HEI employees (typically IRO coordinator) or migrated from local, custom SIMS to
moveon. Retyping the data from local SIMS may be cumbersome thus the functionality of
migrations appears more practical. It is not, however, a persistent type of integration since
migrations need to be carried by a unisolutions specialist every time it is needed to bring the
two systems to sync – this is of course a commercial service. Other existing possibilities of
data export formats are: MS Excel format and PDF for printable LAs and ToRs which are
created according to ECTS regulations.
It is worth noticing that moveon has web service support, but for e-nominations proce-

dure only. Unfortunately, the format of such exchange is not actually open and defined in
a straightforward way because the data is in most cases coded into xsd:base64Binary type.
Such practice violates the so called “spirit of XML”1 and makes it much more difficult to cre-
ate an interoperable implementation. Without any documentation, the only way to discover
the format is to use reverse engineering techniques which may be ineffective.

E-procedures

e-agreements E-agreements are intended to automate the negotiation or renewal of bilat-
eral agreements between partner institutions and enable them to generate and print the agree-
ments with one click. Both partner institutions can work on the same agreement online, get
an up-to-date list of all agreements and track the status of each agreement. During the whole
process the communication between partner institutions is e-mail-driven. The procedure is as
follows:

1. either of the cooperating institutions proposes an agreement,

2. both institutions make consecutive corrections to the proposed agreement,

1Any IT standard formal or informal (i.e. technology, programming language, data format) is usually sup-
ported by a community of authors, developers and users whose knowledge, experience and expertise expresses
through some general guidelines and best practices on the usage of that particular standard. XML is also
the case.

34

3. when the conditions are mutually accepted, either of the HEIs prints the agreement,
signs it and sends to the other HEI,

4. the document of agreement gets co-signed and one copy is sent back.

A schematic overview of e-agreements process is shown in Figure 4.1.

Slide 15 / 33QS unisolution July 1st, 2009

e agreements

Platform for the electronic processing
of bilateral agreements

Proposes Agreement

Makes corrections

Validates Agreement

Signs Agreement

Makes corrections

Validates Agreement

Prints & signs Agr.

University 2University 1

• Automates and secures the negotiation
of bilateral agreements between partner
universities

• Both institutions work on the same
document online

• Can be used by all institutions

• Printable with one click

Figure 4.1: e-agreements workflow, taken from [UNICON]

e-nominations This is a procedure of nominating students for a mobility offer. The proce-
dure is capable of dealing with two possible cases: outgoing and incoming students. A general
workflow of this process is shown in Figure 4.2 – more details about how this workflow
is handled by the software are listed here:

1. an employee of IRO defines mobility offers based on agreements with partner HEIs,

2. students create their accounts and apply for a mobility by filling appropriate forms
with their personal data, information about their education, language skills, etc.,

3. coordinator reviews the applications and decides who is going to be nominated,

4. partner HEI is informed about nominations by automatically generated e-mail,

5. partner coordinator follows a link to a moveon webpage where they look up the data
supplied by nominated students and inform them about decision and further procedure
required,

35

6. students send application according to the demands of partner HEI.

It is possible to store information about calculated grants in the system, so at the end
of mobility an automatically generated report for National Agency is available.

Slide 14 / 33QS unisolution July 1st, 2009

e nomination

Nominates student

Acknowledges receipt

Sends application

Accepts / refuses student

Outgoing | Incoming

• Automates and secures the
nomination between partner
universities

• For incoming and outgoing
students

• For International Offices
worldwide

• Independent of exchange
programme

Platform for the electronic processing of all nominations of exchange students

Student

University 2University 1

Figure 4.2: e-nominations workflow, taken from [UNICON]

e-transcripts This is a procedure of creating a ToR document. The procedure obviously
involves a previously agreed LA which is complemented with grades entered by the partner
administrative staff. Finally, a PDF document is generated and a printed version gets signed
and sent by the partner institution to the home institution of the student. A schematic
diagram of this process is presented in Figure 4.3.

4.1.2. moveonnet

Moveonnet is a worldwide portal (directory) of Higher Education which is mainly targeted
at providing information about:

� guides on education systems, institutions and study programmes,

� HEIs including general information, contacts, list of partners, information for exchange
students, ranking positions, location on a map, etc.

� countries including general information, regions/states, higher education system, insti-
tution types and list of institutions,

� documents on the internationalization of higher education.

36

Slide 17 / 33QS unisolution July 1st, 2009

e transcripts (LA & ToR)

• Easy & flexible creation of Learning
Agreements, optimal with online course catalogue

• Changes by student possible during the
exchange possible at any time

• Includes equivalencies of courses at home
institution to guarantee recognition

• Changes traceable for partner institutions at any
time

• Basis for ToR (at the end of the exchange marks
will be added to the LA)

Platform for the electronic edition of Learning Agreements & ToRs

Adds LA
(Course unit / ECTS)

Prints LA

Student

Changes to LA

ToR

Host university

Sign ToR

Sign LA

Figure 4.3: e-transcripts workflow, taken from [UNICON]

The idea behind moveonnet is to provide a searchable catalogue where a student could
browse all the relevant information in one place and HEIs could communicate, make agree-
ments, present their offer. It is worth noticing that with moveonnet it is possible to perform
the same e-procedures for IROs as moveon provides, except for e-transcript which at the
time of this being written was under development. It is also possible to integrate a moveon
installation with moveonnet membership to have the best of two approaches – a dedicated,
customized stand-alone system as well as promote one’s offer amongst competitors.
The functionality is centered around the following areas:

� cooperations, agreements: exchange possibilities, publication of mobility offer,

� mobility: online application, selection, learning agreement, transcript of records, publi-
cation of reports,

� finances: fundings, grants, grant holders status, calculation of grants, automated pay-
ments, financial reports, export to national agencies,

� support functions: correspondence, reports, statistics and indicators.

In order to use the e-procedures the data needs to be entered to the system by filling its
web forms by hand. It is a particularly superfluous activity when the data demanded is al-
ready stored in HEI’s local SIMS. According to Ms. Klementyna Kielak, an employee of IRO
at the University of Warsaw, that is not the only problem – the e-nominations procedure
often requires data which may be not gathered by a HEI or be irrelevant at that stage.

37

4.2. Europass Mobility System

In order to facilitate the lifecycle (creation, completion and issuing) of Europass Mobility
documents, Cedefop delegated development of a dedicated distributed system to Quality &
Reliability company. As a result, Europass Mobility System (EMS) [SITI06] has been created.
The Europass Mobility System has been designed as a multi-node, hierarchical distributed

system. Nodes, which contain all the database and application components required to run
the Europass Mobility System in an autonomous fashion, are installed in each country of EU
by local National Europass Centres (NECs). Larger countries may have more than one system,
e.g. HEIs may host their own instances. The communication is carried through web services
in secure channel. The nodes are supported by a central naming service, called the Central
Authority node and hosted by Cedefop, which keeps the addresses of the nodes so they
may communicate to each other. Each new node needs to be registered within the Central
Authority node in order to let all the nodes in the network become aware of the newcomer.
The system is accessible to humans via a web interface.
The system supports the following workflow of issuing a Europass Mobility document:

1. a home institution connects to the web interface of the local NEC’s EMS node and
initiates a new Europass mobility experience for its student,

2. the home institution prepares a provisional document with suitable data regarding the
mobility experience filled in (if the student is already known to that NEC’s node, data
need not to be reentered),

3. the home institution locates the partner institution in EMS by using the search facility,
it can do this by searching by keyword, by country, etc., then it sends the semi-completed
document to the partner,

4. when the mobility experience is completed, the partner institution completes its part
(e.g. Transcript of Records and/or Skills and Competences acquired during the experi-
ence), signs it digitally and sends the document back to the sending partner,

5. the home institution then issues the Europass Mobility document to the student, in
the form of a digitally signed PDF file enriched with an XML attachment.

6. the Europass Mobility document is finally archived and can be retrieved at any time,
e.g. for re-issuing.

The validity of documents issued by the system can be checked in two ways:

1. by verifying them directly against the appropriate root CA certificate installed locally,

2. or by verifying at the Europass website – the document needs to be uploaded.

The Europass Mobility System is claimed to bring the following benefits:

� availability of full documentation (including local and global statistics) for all European
mobility experiences,

� reduction of workload and paperwork involved in completing a Europass Mobility doc-
ument,

� promotion of citizen’s mobility in Europe.

38

It is apparent that a substantial part of the Europass Mobility documents managed
by EMS is the Erasmus programme mobilities between HEIs. Similar issues regarding prob-
lem domain along with some architectural and implementation similarities (network of nodes
communicating via web services) build the potential to work on further integration and stan-
dardization of the two (to some extent) complementary solutions. There is an informal initia-
tive to achieve a high level of interoperability between EMS and SIMSes used by European
universities. Cooperation between Cedefop and SIMS vendors (participants of the Mobility
Project) creates an opportunity for common efforts in widening Cedefop’s standardization
efforts with mobility scenarios stated in this document.

39

Chapter 5

Architecture and design

Requirements analysis leads to a conclusion that to obtain the goals of the Mobility Project
we need a distributed architecture which has the following characteristics:

� any two nodes should contact directly – the only entities involved are the two HEIs
which carry the student mobility initiative; there is no need for an agent which sits
in the middle,

� existence of a single point of failure is discouraged – a consequence of the former point,

� any two nodes are totally equivalent including but not limiting the available kinds
of data exchange, data transmission initiation, etc.

There are also other factors worth noticing:

� amounts of data are not very significant and the data is not exchanged continuously,

� flash crowd is not likely to happen.

This leads to a conclusion that we need a P2P-like architecture where every node acts
as a server and client at the same time. We need to define the protocol used to perform data
exchange. As a platform for creating one, a SOAP-based [SOAP11] web service defined in
terms of a WSDL [WSDL] document seems a reasonable choice. Web services offer a great
level of abstraction from the underlying network transport considerations and issues. Web
services make use of well-known standards such as HTTP or XML. They have become very
popular and today are recognized as an undisputed industry standard. They are also sup-
ported by virtually any commonly-used programming language. The last is true for the 1.1
revision of the standard. The newest version – 2.0 – has much less support among web services
frameworks, therefore WSDL 1.1 is chosen.
Besides SOAP web services, there are other styles of web services as well, namely XML-

RPC and REST. The former one has been discouraged due to the fact that it has serious
limitations, one to mention is a lack of support for developer-defined data types or charac-
ter set. REST, on the other hand, is rather a set of principles than a formal standard and
it proved advantageous in scenarios which assumed rapid development of a web service inter-
face and did not impose a requirement of being compliant with a very formal, clearly defined
specification.
Since the number and addresses of endpoints may change, there is a need to maintain

a database of them. It is always possible to develop a custom solution for that but there exists
a core web service standard for storage of web services’ metadata named UDDI (Universal

41

Description Discovery and Integration) [UDDITC] – for further reference see the web page
of UDDI Technical Committee [UDDITC].
There is a dilemma whether to provide one global UDDI registry instance or delegate

the requirement of having a private registry to each node. It is currently not quite clear
how this should be solved. A single registry has an advantage of keeping all the information
in one place but it is an apparent single point of failure. There is also a major concern
of the body responsible for maintaining the registry and what procedures should be used
when its data need to be updated. In the light of these issues the concept of private registry
appears presently more appropriate. However, as further requirements are discovered it may
turn out that this decision needs to be verified.
The software is divided into 4 independent modules: 2 essential transport modules – one

for client and one for server side of communication and 2 web interfaces for each transport
module. An overview is presented in Figure 5.1. The modules are all located in the middle
part of the diagram, which is labelled “Transport middleware”. The top box represents client
transport and web modules while the one at the bottom – server modules respectively.
The software acts as a generic node. The nodes can communicate to each other. A schematic

diagram of a graph of nodes communicating is shown in Figure 5.2. The circles in the diagram
denote individual nodes.

42

Figure 5.1: Architecture of the system

43

Figure 5.2: Nodes in the system

44

Chapter 6

WSDL Document

This chapter contains a detailed description of the designed WSDL document describing
the vocabulary and behaviour of the exposed web service.

6.1. WSDL standard overview

This section is intended to describe the purpose of the WSDL standard along with other
standards related to it.

6.1.1. WSDL

WSDL is an XML format of network services description. The network services are seen as
a set of endpoints exchanging messages. The messages use vocabulary defined in the types
section of WSDL with XML Schema language [XMLSCHEMA]. The operations and messages
are abstract by themselves. The binding to a specific protocol is defined separately. However,
WSDL defines a binding for SOAP 1.1 protocol. WSDL document consists of several consec-
utive parts shown in Figure 6.1.

6.1.2. XML Schema

XML Schema definition language offers facilities to describe the structure and constrain
the contents of XML 1.0 documents, including those which exploit the XML Namespace
facility. It extends in a considerable way the capabilities of XML 1.0 DTDs (Document Type
Definitions). The main difference is an extensive and extendable type system which provides
substantial amount of flexibility in refining one’s own vocabulary. Thanks to this a great deal
of work involved in the process of document validation is delegated to XML parser.

6.1.3. SOAP

SOAP is a lightweight protocol for exchange of information in a decentralized, distributed
environment. It is an XML based protocol that defines the contents of a message and how
to process it, a set of encoding rules for expressing instances of application-defined data types,
and a convention for representing remote procedure calls and responses. SOAP can potentially
be used in combination with a variety of other protocols but the standard describes how to use
SOAP in combination with HTTP only.

45

Figure 6.1: Overview of WSDL 1.1. Based on: http://en.wikipedia.org/wiki/File:WSDL_
11vs20.png

6.2. Overview

There are some key aspects to consider when proposing a new standard. Firstly, there is a need
to provide a vocabulary of well-defined terms which model the problem domain well. Secondly,
there is a need to avoid unnecessary complexity and keep things possibly simple according to
the rule of Ockham’s razor. Thirdly, a good standard leaves a way to extend it easily. And the
last but not least, employment of existing standards and practices to the maximum extent
would be highly desired, so the effort of converting the data already formatted in compliance
to standards is minimized. The level of adoption of a standard may be significantly influenced
by considerations regarding potential integration easiness.
I decided to reuse ideas of SCHAC (see Section 2.3) because, despite its deficiencies

described in Section 2.3, its purpose is the closest to the problem to be solved. Besides,
SCHAC leverages ISO and RFC norms and provides precise definitions.
I have also made a few definitions connected with domain classification, grade, ECTS

credits to some extent similar to those found in Europass (Mobility).

6.3. Conventions

Note: It is assumed that xsd prefix is bound to http://www.w3.org/2001/XMLSchema names-
pace, whereas definitions (types, elements, etc.) which belong to WSDL’s target namespace
http://mobility.usos.edu.pl do not contain any prefix.

46

http://en.wikipedia.org/wiki/File:WSDL_11vs20.png
http://en.wikipedia.org/wiki/File:WSDL_11vs20.png

I followed several conventions regarding WSDL document:

� all names are in lower camel case (example: anotherNameInCamelCase),

� names of types end with ‘T’,

� names of groups end with ‘G’,

� operations which require personal data are constructed in such a way that:

– personal data comes first wrapped in a uniquePersonalData element, it is con-
strained with a xsd:key construct placed on studentId and employeeId for stu-
dents and employees respectively,

– the actual data sent by a particular method has references to the uniquePerson-
alData element through xsd:keyrefs,

� all operations are request-response, i.e. the endpoint receives a message and sends a cor-
related message (see http://www.w3.org/TR/wsdl#_porttypes),

� all operations throw an errorMessage fault,

� messages used to compose an operation have exactly one part, i.e. message element has
exactly one part child,

� input messages having an agreement context (input messages of so called “agreement-
dependent methods”) have an agreementId element as a child of the document root,
so XPath1 query /<requestName>/agreementId/homeId/organizationId, where<re-
questName> is the name of the current request, evaluates to a client organizationId
value.

XML Schema groups were introduced mainly for the purpose of clarity of XML instances.
The same ideas could be modeled without using groups. Although the instance would then
have a more verbose, nested structure, it would rather not be more understandable for hu-
mans. These pieces simply require a bit of commentary which cannot be reasonably expressed
with a short element or type name.
Some of the types are equipped with key and keyref constraints. These constructs prevent

unnecessary data repetition and some basic data inconsistencies.

6.4. Vocabulary

6.4.1. Helper types

� nameT – general name without whitespace;

� internationalizedStringT – list of strings in different languages; see Figure 6.2;

Figure 6.2: internationalizedStringT type

1For simplicity we assume that the query and the context node share the same, proper namespace.

47

http://www.w3.org/TR/wsdl#_porttypes

� academicPeriodT – enumeration of possible parts into which academic year is divided;
see Table 6.1;

Value Description

Y Full academic year
S1 Winter semester
S2 Summer semester
T1 First trimester
T2 Second trimester
T3 Third trimester

Table 6.1: Possible values of academicPeriodT type

� academicPeriodSinceT – academicPeriodT value in a specific academic year plus du-
ration expressed in units imposed by academicPeriodT; see Figure 6.3;

Figure 6.3: academicPeriodSinceT type

� addressT – sequence describing an address; see Figure 6.4;

Figure 6.4: addressT type

� emailT – string restricted to contain a valid e-mail address;

� errorT – error code and message; see Figure 6.5;

6.4.2. Identifiers

For these types of information which have an ISO standard, I decided to use them (as also
did SCHAC and Europass). These types are shown in Table 6.2.

48

Figure 6.5: errorT type

WSDL type Description ISO standard Example value(s)

countryCodeT Country ISO 3166-1 alpha-2 “PL”, “IT”, “GB”
languageCodeT Language ISO 639-1 “pl”, “en”, “de”
genderT Gender ISO/IEC 5218:2004 “1”, “2”

Table 6.2: ISO-based types

Note: The xsd:date data type uses format conforming to ISO 8601:2004(E) (it is a subset).
For reference see: http://www.w3.org/TR/xmlschema-2/#isoformats.

There is also a need to uniquely identify a HEI. Following SCHAC’s schacHomeOrgani-
zation, I defined organizationIdT type which points to domainT type defined according
to domain names as described in RFC 1035 [RFC1035]. There is an issue of what the val-
ues for certain organizations actually are. It may be safely assumed that the domain name
used for Internet services (e.g. website) of an organization would serve as a valid and pretty
straightforward identifier. Some examples are given in Table 6.3.

Organization name Web page address organizationIdT value

University of Warsaw www.uw.edu.pl uw.edu.pl
Warsaw University of Technology www.pw.edu.pl pw.edu.pl
University of Parma www.unipr.it unipr.it

Table 6.3: Example values of organizationIdT type

Although the project currently concentrates on only one type of organization – namely
an HEI – it may be extended in the future for a wider range of organizations. In order
to provide organization type information I introduce a SCHAC’s schacHomeOrganization-
Type-based type organizationTypeT. Its values are a result of the following transformation
of original SCHAC values:

1. strip urn:mace:terena.org:schac:homeOrganizationType prefix with a consecutive
colon,

2. split the result through colons,

3. arrange the result into a two-element sequence.

SCHAC defines possible values at http://www.terena.org/registry/terena.org/schac/
homeOrganizationType/ and a list of equivalent values for organizationTypeT is given in Ta-
ble 6.42.
2The list provided in the first column of the table does not obviously contain valid XML values. The format

49

http://www.w3.org/TR/xmlschema-2/#isoformats
http://www.terena.org/registry/terena.org/schac/homeOrganizationType/
http://www.terena.org/registry/terena.org/schac/homeOrganizationType/

Value ([nationalNamespace, value]) Description

[eu, higherEducationInstitution] HEI
[eu, educationInstitution] Education institution with multiple levels of education
[int, NREN] National research and education network
[int, universityHospital] University hospital
[int, NRENAffiliate] Affiliate of a national research and education network
[int, other] Other organization

Table 6.4: Possible values of organizationTypeT type

Identifiers of students and employees are coded as organizationalPersonalIdT type
which consists of an organizationIdT-like prefix, a colon and an id given by the organiza-
tion, e.g. uw.edu.pl:60225. Type organizationalPersonalIdT would have a more elegant
definition, if XML Schema were able to use values of complex types with key definitions
(xsd:key).
In case a national id of a person is needed, there is the type nationalPersonalIdT which

is a string based on SCHAC’s attribute schacPersonalUniqueID but does not use a prefix
urn:mace:terena.org:schac:personalUniqueID and id type information. Value consists
of a country prefix (exactly as in countryCodeT), a colon and an identification number.
The national identifier is the most convenient kind of personal identifier possible but due to
the legal issues connected with personal data protection regulations in some countries it may
not be possible to share such data. Therefore its use is optional, see personalCharacteris-
ticsT type in Figure 6.8.

Type of national id Example value

Finnish FIC fi:260667-123F
Spanish NIF es:31241312L
Swedish NIN se:12345678
Polish PESEL pl:77121201230

Table 6.5: Example values of nationalPersonalIdT type

Table 6.5 shows a few examples.
Courses are identified by codes unique within an organization but use of pairs [organi-

zationId, courseCode] is not a necessity due to the fact that course codes are always placed
within a context of an organization.
Type studyLevelT identifies a required level of study of a nominated student. Possible

values are presented in Table 6.6.
In order to identify a bilateral agreement between organizations, type agreementIdT

is provided (shown in Figure 6.6, example in Listing 6.1). It consists of two sub-ids for both
organizations. These sub-ids comprise of an organizationIdT value along with an internal
agreement identifier – localAgreementIdT – shown in Figure 6.7, example in Listing 6.2.

supplied in the header in brackets reflects the names of XML element nodes while the actual values contained in
the table are the possible text content of the respective element nodes. The intention was to simplify notation
in order to keep the table small.

50

Value Meaning

1 Student
2 Master student
3 PhD. student
4 Student of any level

Table 6.6: Possible values of studyLevelT type

Figure 6.6: agreementIdT type

<tns:homeId>
<tns:organizationId>unipr.it</tns:organizationId>
<tns:value>1207/E/XI08</tns:value>

</tns:homeId>
<tns:partnerId>

<tns:organizationId>uw.edu.pl</tns:organizationId>
<tns:value>982/E/II08</tns:value>

</tns:partnerId>

Listing 6.1: agreementIdT example

Figure 6.7: localAgreementIdT type

<tns:organizationId>uw.edu.pl</tns:organizationId>
<tns:value>982/E/II08</tns:value>

Listing 6.2: localAgreementIdT example

6.4.3. Personal data types

� personalCharacteristicsT – sequence of basic personal data; definition in Figure 6.8;

� personalPositionT – free format string containing a description of a person’s position
inside an institution;

� employeePersonalCharacteristicsT – extension of personalCharacteristicsT which
adds data specific for an employee; definition in Figure 6.9, example in Listing 6.3;

51

Figure 6.8: personalCharacteristicsT type

Figure 6.9: employeePersonalCharacteristicsT type

<tns:givenName1>Marcin</tns:givenName1>
<tns:surname1>Benke</tns:surname1>
<tns:gender>1</tns:gender>
<tns:employeeId>uw.edu.pl:1234</tns:employeeId>

Listing 6.3: employeePersonalCharacteristicsT example

� studentPersonalCharacteristicsT – extension of personalCharacteristicsT which
adds data specific for a student; definition in Figure 6.10, example in Listing 6.4;

52

<tns:nationalPersonalId>IT:RCLFBA70D19D708A</tns:nationalPersonalId>
<tns:givenName1>Fabio</tns:givenName1>
<tns:surname1>Arcella</tns:surname1>
<tns:gender>1</tns:gender>
<tns:studentId>unipr.it:9001</tns:studentId>
<tns:dateOfBirth>1970−04−19</tns:dateOfBirth>
<tns:placeOfBirth>Formia, IT</tns:placeOfBirth>
<tns:email>f.arcella@kion.it</tns:email>
<tns:permanentAddress>

<tns:street>Via Cristoni</tns:street>
<tns:houseNumber>70</tns:houseNumber>
<tns:flatNumber/>
<tns:postalCode>40033</tns:postalCode>
<tns:city>Bologna</tns:city>
<tns:country>IT</tns:country>

</tns:permanentAddress>
<tns:stationaryPhone>00390516111453</tns:stationaryPhone>
<tns:mobilePhone>00393489006216</tns:mobilePhone>

Listing 6.4: studentPersonalCharacteristicsT example

Figure 6.10: studentPersonalCharacteristicsT type

6.4.4. Organization-related types

� organizationDataT – structure describing an organization; type presented in Fig-
ure 6.11; example in Listing 6.5;

53

Figure 6.11: organizationDataT type

<tns:organizationId>uw.edu.pl</tns:organizationId>
<tns:name>

<tns:value language=”en”>University of Warsaw</tns:value>
<tns:value language=”pl”>Uniwersytet Warszawski</tns:value>

</tns:name>
<tns:address>

<tns:street>Krakowskie Przedmiescie</tns:street>
<tns:houseNumber>26/28</tns:houseNumber>
<tns:postalCode>00−927</tns:postalCode>
<tns:city>Warsaw</tns:city>
<tns:country>PL</tns:country>

</tns:address>
<tns:URL>www.uw.edu.pl</tns:URL>
<tns:administrativeCoordinator>uw.edu.pl:45065</tns:administrativeCoordinator>
<tns:institutionalCoordinator>uw.edu.pl:112233</tns:institutionalCoordinator>

Listing 6.5: organizationDataT example

6.4.5. Course-related types

� subjectAreaCodeT – code of a study subject area within a specific classification; classi-
fications supported are: EU, ISCED97 (case insensitive); EU denotes Socrates/Erasmus
coding while ISCED97 – UNESCO ISCED 97 standard [ISCED]; examples:

– EU – “11.3” corresponds to Computer Science, “15.1” – to Journalism,

– ISCED97 – “48” denotes Computing, “32” refers to Journalism and information;

see definition in Figure 6.12; any element of this type is constrained with a key on clas-
sification attribute;

Figure 6.12: subjectAreaCodeT type

� courseCodeT – organization’s internal course code, a wrapper of nameT;

54

� studyCreditsT – credits of a given type granted for completing the course; shown
in Figure 6.13; implementations are required to recognize value ECTS of unit attribute;
any element of type studyCreditsT is constrained with a key on unit attribute;

Figure 6.13: studyCreditsT type

� contactHoursT – a non-negative float value indicating total number of hours of a course
(lectures, classes, labs), e.g. 30, 60;

� courseDataT – description of a course; definition in Figure 6.14; example in Listing 6.6;

Figure 6.14: courseDataT type

<tns:code>1000−234aMRJ</tns:code>
<tns:name>

<tns:value language=”en”>Compiler construction</tns:value>
<tns:value language=”pl”>Metody realizacji jezykow programowania</tns:value>

</tns:name>
<tns:description>

<tns:value language=”en”>Structure of a compiler. Phases of compilation: analysis (
lexical analysis, syntax analysis, context vel semantic analysis), synthesis (code
generation, optimization, loading). Data structures of a compiler (symbol table et al
.).</tns:value>

<tns:value language=”pl”>Struktura kompilatora. Fazy kompilacji: analiza leksykalna,
skladniowa, kontekstowa, generowanie kodu, optymalizacja, skladanie kodu.
Struktury danych kompilatora (tablica nazw, tablica symboli).</tns:value>

</tns:description>
<tns:language>pl</tns:language>
<tns:courseURL>https://usosweb.mimuw.edu.pl/kontroler.php? action=actionx%3Akatalog2
%2Fprzedmioty%2FpokazPrzedmiot(prz kod%3A1000−234aMRJ)&lang=2</
tns:courseURL>

Listing 6.6: courseDataT example

� courseInstanceT – an instance of a course is distinguished by a particular period,
semester or academic year, it also has a lecturer and amount of study credits defined;
definition in Figure 6.15;

55

Figure 6.15: courseInstanceT type

<tns:code>1000−2M03DM</tns:code>
<tns:studyCredits>

<tns:value unit=”ects”>5</tns:value>
</tns:studyCredits>
<tns:contactHours>30</tns:contactHours>
<tns:period>

<tns:academicYear>2008</tns:academicYear>
<tns:academicPeriod>S1</tns:academicPeriod>
<tns:duration>1</tns:duration>

</tns:period>
<tns:lecturerId>uw.edu.pl:1111</tns:lecturerId>

Listing 6.7: courseInstanceT example

� gradeT – grade from a given grading scheme; presented in Figure 6.16; constrained with
a key on gradingScheme attribute; supported values: ECTS (denoting ECTS Grading
Scheme – see p. 13) and local (indicating grading scheme of the issuer HEI);

Figure 6.16: gradeT type

<tns:value gradingScheme=”local”>5</tns:value>
<tns:value gradingScheme=”ects”>A</tns:value>

Listing 6.8: gradeT example

� academicYearT – a wrapper of xsd:gYear, e.g. 2009.

6.4.6. Agreement-related types

� cooperationConditionsIdT – an artificial identifier for a set of conditions within
an agreement between organizations; technically a positive integer constrained with
a key to ensure its uniqueness.

6.5. Methods

Most methods have two versions, so any of the parties can initiate data exchange. A specific
method call is supposed to complete successfully only when all prerequisite method calls have

56

already succeeded. Figure 6.17 shows method dependencies.

Figure 6.17: Method dependencies

All of the methods, excluding getCourseData and validateNationalPersonalId, need to in-
clude personal data. There is a possiblity that the same person may be referenced more
than once, i.e. a lecturer leads multiple courses or one person is a coordinator and a lecturer
at the same time. Each method including personal data is made of two parts:

1. a list of personal data items divided into students and employees,

2. the actual data carried by a particular method.

The personal data list is in each case constrained with two keys: one pointing to employ-
eeId and the other to studentId values. Any definitions in the second part which include
employeeId or studentId values have keyref constraints enforcing these values to reference
elements in the first part. The construct described ensures that the data about each employee
and student appears only once.

6.5.1. Agreement-independent methods

Methods listed in this section do not depend on a bilateral agreement.

sendOrganizationData/getOrganizationData

These methods exchange organizationDataT structures (Figure 6.11).

57

sendAgreementData/getAgreementData

These calls are responsible for exchanging contents of a bilateral agreement signed by two HEIs.
An agreement modeled by agreementData (shown in Figure 6.18) includes:

Figure 6.18: agreementData type

<tns:homeAdministrativeCoordinator>uw.edu.pl:60225</tns:homeAdministrativeCoordinator>
<tns:homeInstitutionalCoordinator>uw.edu.pl:45065</tns:homeInstitutionalCoordinator>
<tns:partnerAdministrativeCoordinator>unipr.it:1212</tns:partnerAdministrativeCoordinator>
<tns:partnerInstitutionalCoordinator>unipr.it:1313</tns:partnerInstitutionalCoordinator>
<tns:startDate>2008−10−01</tns:startDate>
<tns:endDate>2009−06−30</tns:endDate>
<tns:subjectAreaAgreement>
...

</tns:subjectAreaAgreement>

Listing 6.9: agreementData example

� id of an agreement (agreementIdT value – Figure 6.6),

� administrative and institutional coordinators at both sides,

� start and end dates of the agreement,

� lists of subjectAreaAgreement elements presented in Figure 6.19.

Figure 6.19: subjectAreaAgreement element

58

<tns:subjectAreaCode>
<tns:value classification=”eu”>11.3</tns:value>

</tns:subjectAreaCode>
<tns:homeUnit>mimuw.edu.pl</tns:homeUnit>
<tns:homeUnitCoordinator>uw.edu.pl:270</tns:homeUnitCoordinator>
<tns:partnerUnit>scienze.unipr.it</tns:partnerUnit>
<tns:partnerUnitCoordinator>unipr.it:1212</tns:partnerUnitCoordinator>
<tns:cooperationConditions>
...

</tns:cooperationConditions>

Listing 6.10: subjectAreaAgreement example

One subjectAreaAgreement element describes agreement details per subjectAreaCodeT
value (in Figure 6.12) and is further divided into cooperationConditionsT values (Fig-
ure 6.20). Each cooperationConditionsT value gathers a more detailed set of conditions
agreed, i.e. number of places for students and number of months agreed for a specific study
level. These conditions function within a defined time period (startDate and endDate)
and specific subject area which is determined by a subjectAreaCodeT value found in the par-
ent element.

A subjectAreaAgreement element also contains:

� an optional identifier of a unit, i.e. an organization contained within the main organi-
zation which is set with an agreementIdT value,

� an identifier of coordinator responsible for a given subject area.

The values may be obviously given for both parties. It has to be noted that the definition
is supplied with a key constraint for studyLevel elements placed as children of all of the
cooperationConditions elements.

Figure 6.20: cooperationConditionsT type

59

<tns:cooperationConditions>
<tns:cooperationConditionsId>1</tns:cooperationConditionsId>
<tns:studyLevel>1</tns:studyLevel>
<tns:homeNumberOfPlaces>3</tns:homeNumberOfPlaces>
<tns:homeNumberOfMonths>5</tns:homeNumberOfMonths>
<tns:partnerNumberOfPlaces>4</tns:partnerNumberOfPlaces>
<tns:partnerNumberOfMonths>5</tns:partnerNumberOfMonths>

</tns:cooperationConditions>

Listing 6.11: cooperationConditionsT example

getCourseData

For a given list of courseCodeT values method returns a list of corresponding courseIn-
stanceT values (Figure 6.15).

validateNationalPersonalId

An utility method to check whether a specific national identifier is valid. It obviously needs
a nationalPersonalIdT value but apart from that some additional data necessary to carry
the validation process may be added.
The format of that additional data is generic: a parameter name and a value should be

given according to convention used by the implementer of this method – see Figure 6.21.
For example, Polish PESEL is generated using information about a person’s date of birth
and their gender (see Listing 6.12 for a complete request example).

Figure 6.21: additionalValidationData type

<tns:validateNationalPersonalIdRequest>
<tns:nationalPersonalId>PL:85102602439</tns:nationalPersonalId>
<tns:additionalValidationData>

<tns:parameter name=”dateOfBirth”>1985−10−26</tns:parameter>
<tns:parameter name=”gender”>1</tns:parameter>

</tns:additionalValidationData>
<tns:validateNationalPersonalIdRequest/>

Listing 6.12: validateNationalPersonalIdRequest example

6.5.2. Agreement-dependent methods

These methods exchange data in a context of an agreement – there is an assumption that
both organizations have already exchanged the agreement through either sendAgreementData
or getAgreementData method call and are aware of that agreement.
Methods: sendArrivalDate, getArrivalDate, sendDepartureDate, getDepartureDate, send-

LearningAgreement, getLearningAgreement, sendTranscriptOfRecords, getTranscriptOfRec-
ords are provided with a context of particular conditions within an agreement by means
of agreementAndCooperationConditionsContextG. As it can be seen in Figure 6.22, the se-
quence comprises of an agreementIdT value and a cooperationConditionsContextG group.

60

The purpose of cooperationConditionsContextG group is to determine cooperation
conditions and a particular duration in academic units. Because cooperation conditions are
identified with a somehow artificial identifier, it is supplied in a form of cooperationCondi-
tionsRedundantContextG – presented in Figure 6.23 – which includes a subjectAreaCodeT
and a studyLevelT value.
Although these values are obviously redundant with regard to the cooperationCondi-

tionsId which must have been accompanied with them when sendAgreementData or get-
AgreementData invocation occurred, they may be of some help when trying to determine
the cooperation conditions and that term may be potentially perceived in a slightly different
way by particular HEIs.

Figure 6.22: agreementAndCooperationConditionsContextG group

Figure 6.23: cooperationConditionsRedundantContextG group

sendNominatedStudents/getNominatedStudents

Basic semantics:

� sendNominatedStudents – send to partner organization a list of nominated students
from home organization,

� getNominatedStudents – get from partner organization a list of nominated students
from partner organization.

Lists of nominated students to be exchanged are contained in nominations element
(see definition in Figure 6.24 and example in Listing 6.13 and grouped by cooperation-
ConditionsId. Both methods need an agreementIdT (see Figure 6.6) and academicYearT
value. The cooperationConditionsRedundantContextG group (see Figure 6.23) is optional
and two cases are possible:

61

� if it is present, the scope of the call is narrowed to the cooperationConditionsId value
(supplied with cooperationConditionsRedundantContextG group),

� if it is not present, it means that data for all cooperationConditionsId values men-
tioned in the applicable agreement should be provided.

Figure 6.24: nominations element

<tns:nominations>
<tns:cooperationConditionsId>1</tns:cooperationConditionsId>
<tns:subjectAreaCode>

<tns:value classification=”eu”>11.3</tns:value>
</tns:subjectAreaCode>
<tns:studyLevel>1</tns:studyLevel>
<tns:stayPeriod>

<tns:academicYear>2008</tns:academicYear>
<tns:academicPeriod>S1</tns:academicPeriod>
<tns:duration>1</tns:duration>

</tns:stayPeriod>
<tns:studentId>unipr.it:9001</tns:studentId>
<tns:studentId>unipr.it:9002</tns:studentId>
<tns:studentId>unipr.it:9003</tns:studentId>

</tns:nominations>

Listing 6.13: nominations example

sendArrivalDate/getArrivalDate, sendDepartureDate/getDepartureDate

Basic semantics:

� sendArrivalDate – send to partner organization arrival dates of partner organization’s
students at home organization,

� getArrivalDate – get from partner organization arrival dates of home organization’s
students at partner organization,

� sendDepartureDate – send to partner organization departure dates of partner organi-
zation’s students from home organization,

� getDepartureDate – get from partner organization departure dates of home organiza-
tion’s students from partner organization.

62

SendArrivalDate and getArrivalDate methods operate on studentArrivalDate elements
shown in Figure 6.25; example is provided in Listing 6.14. Similarly sendDepartureDate
and getDepartureDate exchange twin studentDepartureDate elements – see Figure 6.26.

Figure 6.25: studentArrivalDate element

<tns:partnerStudentId>PL:85102602439</tns:partnerStudentId>
<tns:arrivalDate>2008−10−05</tns:arrivalDate>

Listing 6.14: studentArrivalDate example

Figure 6.26: studentDepartureDate element

63

sendLearningAgreement/getLearningAgreement

Basic semantics:

� sendLearningAgreement – send to partner organization a list of course instances (from
the catalog of partner organization) chosen by a student from home organization,

� getLearningAgreement – get from partner organization a list of course instances (from
the catalog of home organization) chosen by a student from partner organization.

These methods exchange a list of courseInstanceT values (Figure 6.15).

sendTranscriptOfRecords/getTranscriptOfRecords

Basic semantics:

� sendTranscriptOfRecords – send to partner organization a ToR of a student from part-
ner organization,

� getTranscriptOfRecords – get from partner organization a ToR of a student from home
organization.

These methods exchange a list of gradeFromCourse elements – see Figure 6.27; example
in Listing 6.15.

Figure 6.27: gradeFromCourse element

<tns:courseInstance>
<tns:code>2200−1CWPM22</tns:code>
<tns:studyCredits>

<tns:value unit=”ects”>5</tns:value>
</tns:studyCredits>
<tns:contactHours>60</tns:contactHours>
<tns:period>

<tns:academicYear>2008</tns:academicYear>
<tns:academicPeriod>S1</tns:academicPeriod>
<tns:duration>1</tns:duration>

</tns:period>
<tns:lecturerId>uw.edu.pl:13321</tns:lecturerId>

</tns:courseInstance>
<tns:grade>

<tns:value gradingScheme=”ects”>A</tns:value>
<tns:value gradingScheme=”local”>5</tns:value>

</tns:grade>

Listing 6.15: gradeFromCourse example

64

Chapter 7

Implementation

7.1. Technologies

This chapter describes chosen technologies, important implementation decisions and other
relevant implementation details.
The software platform chosen for the project is Java, mainly because it provides a modern,

freely available and architecture-agnostic execution environment accompanied with plentiful
of libraries which allow to quickly develop solutions using industry standards such as web ser-
vices, UDDI, standards for MOM (Message-Oriented Middleware) to name a few particularly
interesting from the project’s perspective.
One possible choice is Java EE, a widely recognized and popular standard for complex,

distributed, multi-tier applications, created and maintained by Java vendor – Sun Microsys-
tems, Inc. Java EE specification provides lots of functionality through standardized APIs.
However, the problem with Java EE is that it is not possible to use only these pieces of func-
tionality that are really needed and the project does not require all the enterprise features
incorporated by Java EE compliant application server. The process of starting and stopping
of an application server is also significant and it has its impact on the general development
time and comfort.
It has to be mentioned that before this implementation another prototype was created and

it was a Glassfish-based solution. Experience gained from that attempt is highly convergent
with what is written above. Moreover, the team responsible for that implementation have
encountered a problem with connecting Oracle AQ to Glassfish JMS, because Glassfish cannot
support Oracle queues out of the box. An Oracle-JMS proxy has been developed but sadly
this solution did not work reliably. After further investigation it came out that the only
promising solution based on Glassfish needed to include a commercial product.
It became apparent that an alternative solution is desired, better in terms of modularity,

simplicity, easiness of development, maintainability and finally fully working and available
at no cost. Fortunately, Apache Software Foundation projects provide the necessary com-
munication functionality (UDDI, web services, messaging) without sacrificing (almost) any
of these features.

7.1.1. Apache Tomcat

Apache Tomcat is a servlet container capable of running Java applications conforming to
the Java Servlet and JavaServer Pages (JSP) specifications. An HTTP server is required in
order to run a web service and a servlet container also fits in that place. It is lightweight,
robust and very popular [INFOQ].

65

7.1.2. Spring Framework

Spring Framework is a general-purpose application framework providing IoC (Inversion of Con-
trol) container. It manages a lifecycle and configuration of application objects. Thanks to IoC
objects are given their dependencies by the container which are composed declaratively, typ-
ically in an XML file. This allows to remove the burden of object creation and management
through traditional object factories. The result is cleaner and more manageable code. As
the primary source of reference, I used Spring in Action by C. Walls and R. Breidenbach
[WaBr05].

7.1.3. Apache Camel

Apache Camel is a routing and mediation engine which provides an Enterprise Integration
Patterns (EIP) implementation. It can work directly with numerous types of transport or mes-
saging models, including but not limited to HTTP, JMS, AMQP, CXF (the project actually
utilizes Camel’s CXF support for web services, Oracle AQ access through JMS API and
AMQP support). Interaction is done through a uniform API for all types of transport, yet
it does not prevent access to specific characteristics of the underlying transport layer.
There are a few other similar and royalty-free solutions, mainly based on Enterprise

Service Bus (ESB) architecture, for example: OpenESB, Apache ServiceMix, OW2 PEtALS.
However, the scope of these projects is a bit different because ESB focuses on providing
an enterprise messaging engine, usually through JBI specification. Therefore the messages
are delivered in a normalized format through a mechanism built on web services model.
Camel looks simpler than ESB which has a more enterprise background but even if it would

finally be felt that for some reason ESB is a better choice – there is still a possibility of
integrating Camel with ServiceMix.

7.1.4. Apache CXF

Apache CXF is a web services framework allowing to build SOAP and WS-* (WSI Ba-
sic Profile, WSDL, WS-Addressing, WS-Policy, WS-ReliableMessaging, WS-Security, WS-
SecurityPolicy and WS-SecureConversation) standards-based services through JAX-WS API
(Java API for XML Web Services). It also integrates with Spring Framework and is easily
embeddable in custom solutions. All these features make CXF suitable for this project.

7.1.5. Apache jUDDI

Apache jUDDI is a UDDI Registry implementation. It conforms to UDDI version 2 specifi-
cation which is sufficient enough to serve as a simple, private registry.

7.1.6. MySQL

MySQL acts as a DBMS backend for jUDDI. Although other DB engines are supported,
MySQL was chosen because it is very popular and proven. It is also widely used at Polish
universities. Nonetheless, there is an option to use any of the jUDDI-compatible DBMSs: DB2,
HSQLdb (HypersonicSQL), Sybase, PostgreSQL, Oracle, TotalXML, JDataStore (Borland).

7.1.7. Apache Scout

Apache Scout is an implementation of the JAXR API [JAXR] which allows to interoperate
with a UDDI version 2 compliant Registry instance. It is a simple implementation intended

66

to do only this one task and as it is an Apache project, one may expect easy integration
with other ones. Another free UDDI library designed for Java – UDDI4J – uses a non-
industry-standard API and its use is therefore discouraged.
Unfortunately, during development a few bugs in Scout were discovered (and reported

to the developers of the project): two minor [SCOUT98], [SCOUT101] but also one rather
critical [SCOUT99] as it effectively prevented retrieval of internationalized names from reg-
istry (at most one name could only be fetched). Due to the lack of feedback from Scout’s
maintainers, I fixed the issues by myself. Thanks to the license used for the project – Apache
License 2.0 [APACHELIC] – the activity of source code modification as well as further redis-
tribution of the modified code were legally permitted.

7.1.8. Apache Qpid

Apache Qpid is an AMQP (Advanced Message Queuing Protocol) implementation. I chose
AMQP in favour of JMS mainly because the Apache JMS implementation – ActiveMQ has
a disqualifying, critical bug: the broker must be available when the client starts, otherwise
the clients hang until the broker is available [AMQ2114]. Main conceptual difference be-
tween AMQP and JMS is that AMQP defines a transport layer protocol. As a result, any
two AMQP-compliant implementations should be truly interoperable which is not the usual
case in the JMS world.

7.1.9. ICEfaces

ICEfaces [ICEFACES] is a server-based RIA (Rich Internet Application) framework. It is
an extension to the standard JSF specification. It supports AJAX and thus it can handle
rendering phase a bit differently. Namely, it is possible to avoid full page refreshes because only
changed parts of the page are sent to the browser and get rendered. There is also support
for an AJAX push feature which allows a server-initiated page update. This functionality
allows to easily develop a page which would show current invocations of the web service
methods. Other reasons to be in favour of ICEfaces are attractive default look and a rich
component library.
I have to notice that there exists an Apache JSF implementation as well but it does not

contain extensions provided by ICEfaces.

7.1.10. JavaScript addons

I used two JavaScript utility addons:

� BoxOver (http://boxover.swazz.org/) – configurable tooltips, a feature not available
in JSF itself, nor in ICEfaces,

� CodeMirror (http://marijn.haverbeke.nl/codemirror/) – code editor with syntax high-
lighting.

7.2. Tools

7.2.1. NetBeans

I used NetBeans IDE as the main Java, JSP, XML editor. It significantly eases editing source
files through many useful features such as syntax highlighting, syntax completion, a-jump-
to-declaration feature, Javadoc support and many more.

67

http://boxover.swazz.org/
http://marijn.haverbeke.nl/codemirror/

7.2.2. Eclipse

Eclipse served for me as a WSDL editor – I found its code completion mechanism exceptionally
convenient.

7.2.3. Apache Maven

Apache Maven is a build automation tool. It has an extensible, plugin-based architecture
which removes the burden of creating an imperative specification what to do to accomplish
a specific task. The behaviour is configured through (usually minimal) XML configuration.
Maven assumes reasonable defaults which in many cases are quite sufficient.

Maven’s main strength is the network-ready dependency handling mechanism. Maven
maintains a local repository of libraries which are downloaded from remote repositories
if the project being built is dependent upon them and they are not already present in the
local cache. Transitive dependencies are also taken into account, so it greatly relieves the
developer of manually completing their environment.

7.2.4. Subversion (SVN)

I used SVN version control system for storing the source code of the project.

7.2.5. Liquid XML Studio Community Edition

I used Liquid XML Studio to generate a HTML documentation for the WSDL document
enriched with graphical representation of its parts.

7.2.6. UML

I utilized UML (Universal Modeling Language) 2.0 formalism to describe business processes
in Section 3.2. UML includes a set of graphical notation techniques to describe static and
dynamic aspects of a software system: design, structure, behaviour, use cases and other. UML
is a de facto industry standard.

7.2.7. Drawing tools

I prepared UML diagrams using Dia. Other drawings were created in OpenOffice.org Draw
and Microsoft Visio.

68

7.3. Components

The project has the following hierarchy:

mobility-project
|-- mobility-basics
|-- mobility-client
| |-- mobility-client-transport
| |-- mobility-client-web
|-- mobility-server
| |-- mobility-server-transport
| |-- mobility-server-web
|-- mobility-uddi
\-- mobility-wsdl

The software consists of 4 Java web applications (distributed as war archives):

� mobility-server-transport,

� mobility-server-web,

� mobility-client-transport,

� mobility-client-web.

Mobility-client-transport and mobility-server-transport applications act as a transport
layer between HEI’s RDBMS and the web service. Both of them use Camel’s Java DSL
to route the messages from database and vice versa. The transport layer interfaces to the
SIMS with XML payload of the web service messages.
Because of the requirement of interoperability with USOS which has its logic coded in Or-

acle procedures (see p. 32), the software communicates with it through PL/SQL procedures
and Oracle Advanced Queuing messaging system abstracted with JMS interface. Other solu-
tions may expose a different interface but there is a great chance that it would be relatively
easy to integrate with Camel due to its extensive communication technologies support.
Mobility-client-web (vel Mobility Client web interface) enables you to invoke operations

of the web service manually and edit UDDI Registry. Mobility-server-web (vel Mobility
Server web interface) enables you to preview request coming to server. Mobility-client-web
and mobility-server-web applications are mainly testing tools.

69

Chapter 8

Summary

8.1. Goals achieved

Beginning with functional requirement number 1 (functional requirements are presented
in Section 3.3.1), one can state that the infrastructure developed enables effective data ex-
change between educational organizations participating in student mobility programmes. The
vocabulary for the modeled domain as well as behaviours of data exchange have been estab-
lished and the network transport software has been created. The solution is capable of being
integrated with a SIMS, which was verified by the example of USOS – some further informa-
tion on that can be found in the beginning of the next section.
The requirement of testability (number 3) is also met. One can initiate method invocations

through mobility-client-web interface. The interface is supplied with XML message templates
which are intended to aid in performing this task. The results of subsequent invocations may
be observed with mobility-server-web.
The status of requirement 2 is described lower, along with a connected non-functional

requirement.
As regards the non-functional requirements, there are also quite a few accomplishments

to be noted (see Section 3.3.2 for non-functional requirements).
Firstly, the architecture chosen assumes that any two nodes are equal, i.e. they do the same

job, none of the nodes is privileged in any way, etc., so the non-functional requirement num-
ber 2 is achieved.
So is the case of the requirement 3. A single node in the system is not going to communicate

with all the rest. Lack of central entity which gathers traffic from extensive number of nodes
is another argument for claiming that the solution will scale well.
Requirement of high source code generality in terms of independence from transport data

format definition (number 4) is fulfilled by features of implementation described in Section 7
to the extent given in subsection A.4.5.
As far as the legal issues are considered, there is a decision to make national personal

identifier (nationalPersonalId element in personalCharacteristicsT) optional as it may
not be desirable to expose it due to some legal concerns of personal data protection present
in several European countries.
Referring to requirement number 7 – installation and management ease, it is hard to tell

authoritatively whether this property holds or not. It has to be admitted that it is not a one-
click install but rather requires performing several tasks which demand some basic knowledge
about administration and Java conventions specifically. My personal opinion, however, is that
installing it is not a hard task for a person who had any previous experience with Java web

71

applications. There is no need to perform any specific maintenance tasks for the applications.
Choice of technologies was carefully carried out with conditions 8a, 8b and 8c in mind

and all of them are satisfied. Apache projects as well as Spring are licensed on Apache
License 2.0, ICEfaces uses Mozilla Public License 1.1. These licenses as well as licenses used
for other software components used are compatible with GNU GPL v3 [GPLCOMPAT].
Security issues (number 2 in Section 3.3.1, number 5 in Section 3.3.2) have not been thor-

oughly addressed in this work. Nonetheless, some guidance on achieving the goals specified
by them is provided in Section 8.2.3.
It is quite hard to evaluate the generality of the data format designed (requirement num-

ber 1) but it is apparently true that it does not force to use concepts specific for Eras-
mus programme. The definitions of course-related types in Section 6.4.5: subjectAreaCodeT
(see p. 54) and gradeT (see p. 56) are prepared to use different codings. Nonetheless, the
real, practical applicability to different programmes needs to be discussed by the interested
parties and verified empirically.

8.2. Future work

8.2.1. Integration with USOS

USOS development team has begun to integrate the provided software with USOS. At the time
of writing, a great majority of methods defined in the WSDL document were already sup-
ported.
Apart from the logic which translates the data between USOS and the Mobility Project

software, a prototype GUI is being created. This GUI part is essential in order to fully real-
ize the requirement number 1. Although the mobility-client-web enables users to invoke web
service methods, it is more of a generic testing tool than a client to be used in a produc-
tion environment. In normal every-day use it would be far from convenient to extract data
from USOS and construct XML messages manually. The GUI frontend will be implemented
in Oracle Forms technology as the rest of the USOS presentation facilities already are.

8.2.2. WSDL

Further work needs to be done in order to discover all the complexities of mobility activ-
ity from organizational, procedural and educational point of view. This goal is going to be
accomplished through extensive cooperation with other European HEIs vividly interested
in the project.
It is expected that engaged HEIs will introduce installations of the provided software

and try to integrate it within their IT environment. Despite the efforts some customizations
and/or modifications may prove inevitable. Then hopefully exhaustive tests will be performed.
The anticipation is, that throughout the steps described, a lot of experience is going to be
collected and the outcome will be a new, even better-suited version of the WSDL definition.
It needs to be noticed that the above is perceived as an iterative process due to the fact

that the requirements may evolve to some extent as the time goes by.
One possible direction of WSDL evolution is changing it to a more explicit CRUD-like

style of operation. Instead of the current style which can be summarized as “add at first, then
only updates possible”, one could imagine a bit different design with more understandable
names and semantics. Examples of verbs following that style would be: create, update, delete.
Other suggestion would be to introduce a more negotiate style, i.e. currently the operations

either succeed or fail. Until any of the parties invokes the operation again, it is assumed

72

that both of them agree on the shared state. This could be enhanced with providing a way
of proposing the new state, which would not become effective until a confirmation is sent.
Operations could be named as: suggest, propose, accept, reject.

8.2.3. Implementation

UDDI

As the security considerations will be taken into account, either the TLS-way or WS-Security-
derivative way, the requirement for digital certificates/keys exchange will appear as well.
Apart from that, the web service registry solution will need to be appropriately adjusted.
This may be done by transition to UDDI version 3 which is, amongst others, enhanced

with:

� replication API (for load balancing and redundancy),

� PK signing.

There is also a chance for an easy upgrade from UDDI version 2 because Apache jUDDI
project offers a version 3 compliant implementation.
Another possible solution addressing these issues could be found in OASIS ebXML Registry-

Repository standard [EBXML]. Important features of ebXML Registry-Repository standard
include:

� federation support – it allows for multiple registries to constitute a logically single
registry while still having local autonomy and security policies active,

� security features: authentication, authorization, single sign-on (SAML support), fine-
grained role-based access control,

� notification services,

� content validation and cataloging.

In addition, ebXML is JAXR-compliant, so implementation of the enhancements sug-
gested here and in the following subsection is possible in a rather evolutionary than revolu-
tionary fashion. The implementation of this standard which could be of particular interest is
an open source project called freebXML Registry [FEBXML].

Web service

WSDL changes are expected to occur because the work on refining the standard is going
to continue. When one imagines a situation of a new version of WSDL document being
released but the target environment is composed of multiple independent nodes, it is apparent
that some of them will adopt the new specification sooner and some later. This situation shows
that we have to deal with several issues. Firstly, we need to maintain some sort of WSDL
versioning and a mechanism which would fall back to the most recent version supported
by two communicating nodes.
Other important matter to be considered is security. One way of achieving a secure trans-

mission with authentication is to make web services use HTTPS rather than HTTP. It is
relatively easy to turn on TLS support in Tomcat [TOMCATSSL], [PENTAHOWIKI] and
have both sides authenticated with Server and Client Authentication enabled. However, due

73

to the potentially growing number of nodes the approach which assumes the keystore file
being static may become impractical.

Other possibility is to introduce one of the security-related web services standards: WS-
Security [WSS], WS-SecurityPolicy [WSSP] or WS-Trust [WST].

Figure 8.1: WS-Security and its derivatives

The relationship between these standards is shown in Figure 8.1. WS-Security is a flexible
mechanism, yet also very low-level. It allows to attach signatures, encryption headers and se-
curity tokens to SOAP messages and encrypt the messages themselves. WS-SecurityPolicy is
a refinement of WS-Security and WS-Policy and provides an easier and more standards-based
way of configuring security requirements of a web service. But WS-Trust specification seems
the most attractive:

“When using �straight� WS-Security, the client and server need to have keys exchanged
in advance. If the client and server are both in the same security domain, that isn’t usually
a problem, but for larger, complex applications spanning multiple domains, that can be a bur-
den. Also, if multiple services require the same security credentials, updating all the services
when those credentials change can by a major operation.

WS-Trust solves this by using security tokens that are obtained from a trusted Security
Token Service. A client authenticates itself with the STS based on policies and requirements
defined by the STS. The STS then provides a security token (example: a SAML token) that
the client then uses to talk to the target service. The service can validate that token to make
sure it really came from the trusted STS.” [CXFWST]

Performance is not a crucial issue due to relatively small amounts of data being trans-
mitted and at relatively low frequency. However, if it would turn out that there is a need
to improve on this, a possible solution would be to apply a compression algorithm to the
XML content sent through web service. After all, XML documents by its nature contain a lot
of repetitive markup. There is a report [Ste07] which claims that potential gains resulting
from applying gzip algorithm range from 2 to 7 times. Another commercial solution [LSD] is
advertised as capable of producing compact representations of XML files which are 20 times
smaller.

74

There are also more sophisticated solutions to the problem which not only help to reduce
the size of documents but also offer to decrease the time needed to parse them. There is
a whole family of “binary XML” specifications aimed at providing a compact representation
of XML. Two notable examples are:

� EXI (Efficient XML Interchange) – format developed by AgileDelta, Inc.; submitted
to W3C, status: second draft of evaluation,

� Fast Infoset, being an ITU-T [ITUT] and ISO standard – ITU-T Rec. X.891 [ITUFI]
and ISO/IEC 24824-1 (Fast Infoset).

Other

One useful enhancement in the matter of configuration management of the project would
definitely be a set of unit tests. Anyone working on the project would benefit a lot if they
would be able to have a means of detecting some regressions automatically.

8.3. Acknowledgements

I would like to thank Dr Janina Mincer-Daszkiewicz for her time, attention and invaluable
advice regarding the work presented hereby.

75

Appendix A

Documentation

A.1. Overview

This chapter provides documentation of the software developed within the frames of the Mo-
bility Project. It is divided into 5 sections.

Present section contains some general information on the organization of the documen-
tation. Section A.2 describes actions which need to be taken in order to install and run
the software, whereas the section following immediately (Section A.3) provides some insight
into typical configuration useful for testing and experimenting with the software. The purpose
of Section A.4 is to provide information useful for modification and maintenance. Section A.5
is the last one and it contains the user’s guide.

A.1.1. General notes

Sections A.2 and A.4 refer to various files used by the applications.

Any configuration file change can be made in two ways:

� directly to the source project (and then recompiled),

� by altering an already built war or jar archive.

Symbol
Mode

src war jar

RES ROOT src/main/resources WEB-INF/classes ε
WEB ROOT src/main/webapp ε –

Table A.1: Auxiliary variable definitions

Table A.1 contains some auxiliary variable definitions used when referencing configuration
files in the mentioned sections.

77

A.2. Getting started

A.2.1. Installation

Requirements

In order to successfully install and use the software provided the following requirements need
to be fulfilled:

� Java SE Development Kit (JDK) 1.6 (the latest build recommended),

� Apache Tomcat 6 installation,

� Apache jUDDI 2 installation with database registry fully configured and working –
installation procedure is included further in the present subsection (precisely in para-
graph jUDDI 2),

� Apache Qpid installation, if mobility-server-web is going to be installed,

� a web browser – needed to access web interfaces, examples: Firefox, (Windows) Internet
Explorer, Opera (the latest versions recommended for proper CSS interpretation).

Steps

jUDDI 2 Because the official installation guide of jUDDI is not good enough to seamlessly
prepare a working instance (it is incomplete and difficult to understand), I decided to provide
a more comprehensible guide. The following applies to jUDDI 2 release candidate versions
(2.0rcx) and final releases (2.0.0, 2.0.1) as well. The only difference is that final releases lack
a few jars.

1. Using MySQL administrative (root) account perform the following steps:

(a) create database for UDDI registry:

CREATE DATABASE <dbName>;

where <dbName> denotes the name of the database,

(b) create user with an arbitrary name, set him a password and grant him privileges
to the database:

CREATE user ’<dbUser>’@’<host>’ IDENTIFIED BY ’<dbUser>’;
SET PASSWORD FOR <dbUser>@<host> = PASSWORD(’<dbPass>’);
GRANT ALL privileges ON <dbName>.* TO <dbUser>@<host>;

where:

� <dbUser> – name of the newly created database user,
� <dbPass> – password of this user,
� <host> – the host which will initiate connections to jUDDI, i.e. the host
where the Tomcat installation containing the Mobility Project software resides
(typically localhost).

2. Copy the MySQL Connector/J 5.1 (JDBC driver for MySQL) jar (mysql-connector-
java-5.1.xx-bin.jar) to $CATALINA_HOME/lib.

78

3. Unpack the jUDDI war archive to $CATALINA_HOME/webapps/<juddiDir>, where <jud-
diDir> stands for the directory name chosen; probably “juddi” would be a good choice.

4. If a final release of jUDDI is used, you need to copy several additional jars which
can be found on the DVD attached (they reside in juddi-2.0-final-jars directory).
The names of these jars are:

� axis-1.4.jar,

� axis-jaxrpc-1.2.1.jar,

� axis-saaj-1.2.1.jar,

� commons-discovery-0.2.jar,

� standard-1.1.2.jar.

They need to be copied to $CATALINA_HOME/webapps/<juddiDir>/WEB-INF/lib.

5. Add the contents of Listing A.1 to $CATALINA_HOME/conf/server.xml as a child of Host
tag, taking care to substitute placeholders in angle brackets with actual values used
in previous steps; <mysqlHost> and <mysqlPass> denote the hostname and port num-
ber of the machine containing a MySQL installation.

<Context path=’’/<juddiDir>’’ docBase=’’<juddiDir>’’ reloadable=’’true’’
crossContext=’’true’’>
<Resource name=’’jdbc/juddiDB’’ auth=’’Container’’
type=’’javax.sql.DataSource’’ maxActive=’’100’’ maxIdle=’’30’’
maxWait=’’10000’’ username=’’<dbUser>’’ password=’’<dbPass>’’
driverClassName=’’com.mysql.jdbc.Driver’’
url=’’jdbc:mysql://<mysqlHost>:<mysqlPort>/<dbName>?autoReconnect=true’’
validationQuery=’’select count(*) from publisher’’/>

</Context>

Listing A.1: jUDDI entry in Tomcat’s server.xml

6. Check that everything was configured properly by pointing your browser to the address
of your installation and choose the Validate option. If there are no red messages, the
installation is successful. During validation the database structure (a set of 31 tables)
needed by jUDDI should have been created. At this point you can successfully create a
jUDDI user account with the following SQL:

INSERT INTO publisher (publisher_id, publisher_name, is_enabled, is_admin)
VALUES (’<juddiUser>’, ’<juddiPass>’, ’true’, ’false’);

substituting <juddiUser> and <juddiPass> with custom values. These credentials need
to be supplied to the UDDI configuration file of the Mobility software.

7. Release candidate releases of jUDDI 2 do not have logging configured. This can be done
by creating a file WEB-INF/classes/log4j.properties in the root directory of your
jUDDI installation ($CATALINA_HOME/webapps/<juddiDir>). Example configuration is
given in Listing A.2.

79

log4j.rootLogger=INFO, out, log

log4j.appender.out=org.apache.log4j.ConsoleAppender
log4j.appender.out.layout=org.apache.log4j.PatternLayout
log4j.appender.out.layout.ConversionPattern=%d %p [%c] − %m%n

log4j.appender.log=org.apache.log4j.RollingFileAppender
log4j.appender.log.File=${catalina.home}/logs/juddi.log
log4j.appender.log.MaxFileSize=1MB
log4j.appender.log.MaxBackupIndex=3

log4j.appender.log.layout=org.apache.log4j.PatternLayout
log4j.appender.log.layout.ConversionPattern=%d %p [%c] − %m%n

log4j.debug=false

Listing A.2: log4j configuration for jUDDI

Tomcat Java 6 has an issue with web service stack implementation (JAX-WS 2.1) which
is used by Apache Scout [JAXWS-JAVA6]. As a workaround, you need to copy a few JAX-
WS 2.1 jars (the attached DVD contains jars from JAX-WS 2.1.7 release) to the endorsed
directory of your Tomcat installation, i.e. $CATALINA_HOME/endorsed. The filenames are:

� jaxb-api.jar,

� jaxb-impl.jar,

� jaxws-api.jar,

� jaxws-rt.jar,

� stax-ex.jar,

� streambuffer.jar.

1. Set desired HTTP port used by Tomcat – check Connector section attributed
with protocol="HTTP/1.1" in $CATALINA_HOME/conf/server.xml.

2. Configure user accounts (for mobility-client-web, mobility-server-web) by editing
$CATALINA_HOME/conf/tomcat-users.xml:

(a) add the following elements as children of <tomcat-users>:
<role rolename="mobility-client-web"/>
<role rolename="mobility-server-web"/>

(b) create user accounts which need access to the applications by adding an entry
with custom username and password attribute values, example given below uses
“admin” for both username and password:
<user username="admin" password="admin"
roles="mobility-client-web, mobility-server-web"/>

80

The Mobility Project applications

1. Deploy push-server.war contained in ICEfaces distribution (in order make AJAX push
technology work properly):

(a) download ICEfaces v1.8.1 distribution (file is named ICEfaces-1.8.1-bin.zip) from pro-
ducer’s website [ICEFACES],

(b) unpack war file which is pointed by the path:
ICEfaces-1.8.1-bin/icefaces/push-server/push-server.war
and copy it to directory $CATALINA_HOME/webapps/push-server.

2. Unpack each of the application war archives:

� mobility-client-transport.war,

� mobility-client-web.war,

� mobility-server-transport.war,

� mobility-server-web.war

to the directory $CATALINA_HOME/webapps/<appName>, where<appName> is the name
of the jar unpacked without .war extension.

3. Configuration per application (file locations given here are relative to the root directory
of the application directory tree):

� mobility-client-transport

(a) configure database connection by editing RES ROOT/database.properties,
(b) configure UDDI – edit RES ROOT/uddi.properties located in the root of
WEB-INF/lib/mobility-uddi-1.0.jar;
i. make sure that the keys uddi.username and uddi.password have the same
values as the username and password inserted into the publisher table
of the database dedicated to jUDDI; the values needed here are the ones
denoted with <juddiUser> and <juddiPass>,

ii. make sure that the following keys have proper values:
– uddi.lifeCycleManagerURL – <url>/publish,
– uddi.queryManagerURL – <url>/inquiry,
where <url> is the URL address of the application, i.e.
http://localhost:8080/¡juddiDir¿.

� mobility-client-web

(a) configure UDDI – edit RES ROOT/uddi.properties located in the root of
WEB-INF/lib/mobility-uddi-1.0.jar in the same way as above,

� mobility-server-transport

(a) configure database connection by editing RES ROOT/database.properties,
(b) RES ROOT/server.properties – enter home organization id (used to lookup
appropriate XML file when the application uses XML files as the data source
– for testing purposes).

� mobility-server-web

(a) RES ROOT/server.properties – enter home organization id (for informa-
tional purposes).

81

4. Configure CATALINA OPTS environment variable by setting it to -Xms256m -Xmx512m
-XX:PermSize=256m -XX:MaxPermSize=512m; the values given worked for a 32-bit Win-
dows platform – generally the values may differ (e.g. higher for 64-bit architectures).
This is similar to the case previously noted in subsection A.4.1.

A.2.2. Running

In order to run the applications:

1. run Qpid broker (needed by mobility-server-web):

� %QPID_HOME%\bin\qpid-server.bat (Windows)

� $QPID_HOME/bin/qpid-server (Unix)

2. start Tomcat by executing the following commands:

� %CATALINA_HOME%\bin\startup.bat (Windows)

� $CATALINA_HOME/bin/startup.sh (Unix)

A.3. Testbed

A common approach at integrating the software with local SIMS is to test it locally in both
client and server scenarios. Therefore two instances of nodes need to be established. One pos-
sibility is to make two installations on different ports within one Tomcat instance by configur-
ing $CATALINA_HOME/conf/server.xml with two Service sections with Connector sections
using different ports.
But in order to simulate a real-world environment better it would be desired to make

two installations of Tomcat with different ports specified in Connector section (as described
in subsection A.2.1). It may be also helpful to supply the UDDI registry with an entry
mapping the local identifier with the local web service to test a case of a partner invoking
methods (using mobility-client-web).
Apart from the client part which may be simulated with mobility-client-web using its sam-

ple data files containing requests (see subsection A.5.1), it is possible to make the server
part – mobility-server-transport – respond with the contents of a file instead of the result
of a database procedure call. Instructions on how to configure this behaviour are provided
in the next two sections (A.3.1 and A.3.2).
An exemplary testbed is shown in Figure A.1.

A.3.1. Modifying requests routing – mobility-server-transport

File RES ROOT/mobility-server-transport-context.xml contains Spring bean definitions.
Routing decision, i.e. whether the response is created in the database or read from the XML
file, depends on the proxyDAO properties configuration:

� defaultMapping – value is a ResponseDAO instance; denotes the default bean handling
a request,

� forwardTo – value is a Map<String, ResponseDAO> instance which provides overrides
for the setting imposed by defaultMapping; key should be an operation name, value
is a target bean – the beans which apply here (implement ResponseDAO interface) have
id attributes of xmlFileDAO and databaseDAO.

82

Figure A.1: Exemplary testbed

83

A.3.2. Adding response files to mobility-server-transport

In order to leverage existing behaviour when providing a response for a request which is con-
figured to use a file through xmlFileDAO as described in Section A.3.1, it is advised to put
the response files of:

� agreement-independent methods –
to RES ROOT/xml/server=<serverOrganizationId>/client=@ny,

� agreement-dependent methods –
to RES ROOT/xml/server=<serverOrganizationId>/client=<clientOrganizationId>.

The filename format is <responseName>.xml (for example the file containing a response
for getOrganizationData method would be named getOrganizationDataResponse.xml) with
an exception for files containing responses for getCourseDataResponse method. In this case
the filenames are formatted as getCourseDataResponse <code>.xml, where <code> is sub-
stituted with a code of a course – a courseCodeT value. You can provide different be-
haviour by implementing FileNameMapper interface and registering an override through
fileNameMappers property analogously to forwardTo property described in Section A.3.1.

A.4. Other tasks

A.4.1. Compilation

Requirements

� Java SE Development Kit (JDK) 1.6 (the latest build recommended).

� SVN installation (the newer the better).

� Apache Maven 2 installation.

� Internet access if there exists a project dependency which is not present in the local
Maven repository1.

� Oracle jars:

– Advanced Queuing – aqapi13.jar,

– JDBC for JDK 1.5 (version compatible with Oracle DB installation, project re-
quires at least 10.2.0.4.0) – ojdbc5.jar, orai18n.jar, orai18n-mapping.jar.

Steps

1. Make sure the Oracle jars are installed in local repository in the following manner:

mvn install:install-file -Dfile=<path-to-file> -DgroupId=<group-id> \
-DartifactId=<artifact-id> -Dversion=<version> \
-Dpackaging=jar -DgeneratePom=true

where:
1Project dependency list can be obtained by issuing mvn dependency:list in the project root (assuming

that the project libraries are installed in local repository – running mvn install does that).

84

� <group-id>=com.oracle,

� <artifact-id> is the jar name without .jar extension,

� <version> is an Oracle version release (e.g. 10.2.0.4.0, 11.1.0.6.0), for aqapi just
enter 1.0.

2. Perform a patched compilation of Apache Scout 1.2:

(a) retrieve the source tree of Scout:

svn checkout \
http://svn.apache.org/repos/asf/webservices/scout/tags/scout-1.2 scout

(b) apply the patch named scout-1.2.patch (available on the attached DVD) – make
sure to change current working directory to the project root directory, i.e. scout:
patch -p1 < /path/to/scout-1.2.patch

(c) compile, package and install into local Maven repository using mvn install,

3. using command-line enter the root project directory mobility-project and issue mvn
package.

Note: If the build fails with a java.lang.OutOfMemoryError: Java heap space or sim-
ilar, try increasing memory (heap space) available for build. It can be done by setting
MAVEN OPTS environment variable to -Xms64m -Xmx128m. Depending on various factors
(primarily architecture – 32 or 64-bit) the values may be higher. A few experiments should
suffice to succeed.

A.4.2. Internationalization

In the following text the term “to provide translation for path/to/file.properties” means:
“to create a new file path/to/file_<languageCode>.properties, where <languageCode>
is an ISO 639-1 code of the new language, with the same keys as the file identified by the path
given but with values translated; preferably just copy the existing file and save it under a new
name and translate the contents”.
Mobility-client-transport, mobility-client-web, mobility-server-transport applications de-

pend on mobility-wsdl-1.0.jar. You need to update it in each application.

� mobility-client-transport – provide translations for:

– RES ROOT/pl/edu/usos/mobility/client/transport/bundle.properties,

– RES ROOT/pl/edu/usos/mobility/client/transport/fault/
bundle.properties.

� mobility-client-web

1. provide translations for:

– RES ROOT/pl/edu/usos/mobility/client/web/bundle.properties,
– RES ROOT/pl/edu/usos/mobility/client/web/validator/
bundle.properties,

2. change used locale in WEB ROOT/WEB-INF/faces-confg.xml – change text value
of the node pointed by a pseudo-XPath expression:
/faces-config/application/locale-config/default-locale.

85

� mobility-server-web

1. provide translation for RES ROOT/pl/edu/usos/mobility/server/web/
bundle.properties

2. change used locale in WEB ROOT/WEB-INF/faces-confg.xml – change text value
of the node pointed by a pseudo-XPath expression:
/faces-config/application/locale-config/default-locale.

� mobility-wsdl – provide translation for RES ROOT/pl/edu/usos/mobility/fault/
bundle.properties.

A.4.3. Adding sample data files to mobility-client-web

Although web client interface is supplied with a few sample data files containing exemplary
contents of messages handled by the system, it may be desired to enrich the application with
more files of that kind.
Sample data file’s filename format is <optionalPrefix><requestName><optionalSuffix>.

The procedure is as follows:

1. add new sample data files to
RES ROOT/xml/client=<clientOrganizationId>/server=<serverOrganizationId>,
where <clientOrganizationId> and <serverOrganizationId> are organizationIdT val-
ues,

2. add the following definition to
RES ROOT/pl/edu/usos/mobility/client/web/resources.properties:

(a) append an arbitrarily chosen identifier (further referred to as <id>) to xml-
ResourceDefs key (unique with respect to existing ids) – it needs to be delimited
from the others with a colon,

(b) add entries:

� <id>.client=<clientOrganizationId>,
� <id>.server=<serverOrganizationId>,

(c) for each sample data file being added create an entry with a key formatted as
<id>.data.<requestName> with a value indicating the filenames sample data
files for a specific request; format is a colon-delimited list of values <optional-
Prefix>{0}<optionalSuffix> (actually a sample data file’s filename format with
<requestName> substituted with {0}).

Example: we need to add sample data files for organizations identified with hei1.eu (client)
and hei2.eu (server). Suppose that we have 2 sample data files named: getOrganization-
Data.xml, sendOrganizationData.xml. The above procedure in this case is as follows:

1. add files getOrganizationData.xml, sendOrganizationData.xml to
RES ROOT/xml/client=hei1.eu/server=hei2.eu,

2. an identifier has to be chosen – let it be hei1 hei2,

3. add the following to RES ROOT/pl/edu/usos/mobility/client/web/
resources.properties:

86

(a) append hei1 hei2 to current value of xmlResourceDefs key (colon-delimited),

(b) add entries:

� hei1 hei2.client=hei1.eu,
� hei1 hei2.server=hei2.eu,

(c) add entries:

� hei1 hei2.data.getOrganizationData={0}.xml,
� hei1 hei2.data.sendOrganizationData={0}.xml.

A.4.4. Adjusting transport to non-Oracle RDBMS

While the server part (mobility-server-transport) does not require any specific changes as long
as HEI’s student management system expects a PL/SQL procedure call, the client (mobility-
client-transport), which is designed to work with Oracle AQ, may need to use a different
connection factory in jmsBean definition located in RES ROOT/mobility-client-transport-
context.xml.

A.4.5. Modifying WSDL

Considerations

Modifying the WSDL document does not break the code, if the changes do not violate con-
ventions assumed (described in Section 6.3). Apart from that, it is essential not to remove
errorT type elements code and message as well as the type itself because the code uses
ErrorT class created during wsdl2java code generation process.

Steps

The path to the WSDL document is src/main/resources/wsdl/MobilityService.wsdl,
relative to the root of the mobility-wsdl project. Recompilation of the whole project is re-
quired, excluding mobility-server-web.

A.5. User’s guide

A.5.1. Mobility Client web interface

Getting started

Open a web browser and enter URL address of the application. A window requesting a user-
name and password will appear. Enter credentials and accept, shall the introduction page
load.

Web service methods

In order to invoke a web service method, choose a method and click its name from the Web
Service Methods menu – a view of the application after clicking the item getOrganizationData
is shown in Figure A.2. Choose client and server from drop-down lists on the top. In the editor
area of the Request section a valid XML containing the message body should be placed.
Achieving that may be aided by the Sample Data File drop-down menu. It contains a list of
samples, if there are any samples provided for the chosen combination of client and server

87

Figure A.2: Web service methods test functionality – getOrganizationData chosen and sample
file loaded into the Request section

88

organizations. For instructions regarding how to add samples, please refer to subsection A.4.3.
It is also possible to use a sample stored locally through Upload a file facility.
You can always validate prepared request against WSDL-generated schema to see whether

it is syntactically correct. To use that feature press Validate against schema button. The result
of validation will show up underneath.
The invocation of the method occurs when Invoke button is pressed. If it is successful,

the contents of response message appear in the Response section. Otherwise, an error message
is displayed under the Invoke button.

UDDI Registry

View mode Application can be used to edit UDDI Registry. In order to make use of this
functionality click Edit menu item under UDDI Registry category in the menu on the left.
Table with UDDI entries shows up in the main area. There are two modes of operation:
view and edit mode. In the view mode (presented in Figure A.3) you can browse the details
of any entry by clicking entries in the table. You can switch to edit mode by:

� pressing Add button which basically adds a new entry but it shows an editor to imme-
diately provide values for the newly created entry, or

� pressing Edit button (an entry in the table needs to be selected) which shows the same
editor but populated with current values of the selected entry.

Edit mode When the editor is visible and you click into a field, a small counter of the num-
ber of characters left appears on the right side of the field. The field Name has a subfield
Language which contains an input field enriched with a convenient list of language codes
conforming to ISO 639-1 norm. The list is visible when that field has focus (see Figure A.5).
Button with Save caption allows to save the state achieved in the editor to the UDDI

Registry. The data is saved after clicking on this button, unless the data provided is not valid –
in that case a short explanatory message is placed on the right side of any field which contains
erroneous data. The fields are validated according to the rules imposed by the corresponding
data types definitions in the WSDL document. Cancel button leaves the editor without saving
anything. Both Save and Cancel buttons return to the view mode.

A.5.2. Mobility Server web interface

Application enables viewing messages received by the server side (i.e. a mobility-server-
transport instance). Provided interface allows you to:

� view the total count of messages shown,

� change the number of items visible on single page,

� toggle a message view from collapsed to expanded and vice versa.

Figure A.6 shows the only screen available in this application.

89

Figure A.3: UDDI Registry in view mode

90

Figure A.4: UDDI Registry in edit mode

91

Figure A.5: Language hint list facility

92

Figure A.6: A view of Mobility Server web interface

93

Appendix B

DVD Contents

The attached DVD contains:

� this document in two forms: PDF format and LATEX source,

� WSDL document with:

– documentation generated with Liquid XML Studio from the XML Schema part,

– example messages in XML files,

� patch file containing bug fixes for Apache Scout 1.2 source code,

� a set of jars from JAX-WS 2.1.7 release,

� software packaged in war archives and in source form (project tree),

� Javadoc source documentation.

95

Bibliography

[AMDR09] F. Arcella, J. Mincer-Daszkiewicz, S. Ravaioli,Web-services for exchange of data
on cooperation and mobility between higher education institutions, EUNIS 2009, The 15th
International Conference of European University Information Systems, 23-26 June 2009,
Santiago de Compostela, Spain.

[AMQ2114] [#AMQ-2114] Failover transport should not hang on startup if it cannot connect,
http://issues.apache.org/activemq/browse/AMQ-2114

[APACHELIC] Apache License, Version 2.0, http://www.apache.org/licenses/LICENSE-2.0

[AUPWG] CAUDIT Technical Standards Committee auEduPerson Working Group,
http://wiki.caudit.edu.au/confluence/display/aafaueduperson

[CEDEFOP] Cedefop – European Centre for the Development of Vocational Training,
http://www.cedefop.europa.eu/

[CEN] CEN – European Committee for Standardization, http://www.cen.eu/

[CENWSLT] CEN Workshop on ’Learning Technologies’ (WS/LT),
http://www.cen.eu/cenorm/businessdomains/businessdomains/isss/activity/wslt.asp

[CINECA] CINECA – Interuniversity Consortium, http://www.cineca.it/

[CWA15555] Guidelines and support for building application profiles in elearning,
ftp://ftp.cenorm.be/PUBLIC/CWAs/e-Europe/WS-LT/cwa15555-00-2006-Jun.pdf

[CXFWST] Apache CXF – WS-Trust, http://cwiki.apache.org/CXF20DOC/ws-trust.html

[DCES] Dublin Core Metadata Element Set, Version 1.1,
http://dublincore.org/documents/dces/

[DCMI] The Dublin Core Metadata Initiative, http://dublincore.org/

[DCMIG] [The Dublin Core Metadata Initiative] Glossary,
http://dublincore.org/documents/2001/04/12/usageguide/glossary.shtml

[DCXML2003] Guidelines for implementing Dublin Core in XML DCMI Recommendation.
2003-04-02, http://dublincore.org/documents/2003/04/02/dc-xml-guidelines/

[DCDSXML] Expressing Dublin Core Description Sets using XML (DC-DS-XML),
http://dublincore.org/documents/2008/09/01/dc-ds-xml/

[EBXML] ebXML – Enabling A Global Electronic Market, http://www.ebxml.org/

97

http://issues.apache.org/activemq/browse/AMQ-2114
http://www.apache.org/licenses/LICENSE-2.0
http://wiki.caudit.edu.au/confluence/display/aafaueduperson
http://www.cedefop.europa.eu/
http://www.cen.eu/
http://www.cen.eu/cenorm/businessdomains/businessdomains/isss/activity/wslt.asp
http://www.cineca.it/
ftp://ftp.cenorm.be/PUBLIC/CWAs/e-Europe/WS-LT/cwa15555-00-2006-Jun.pdf
http://cwiki.apache.org/CXF20DOC/ws-trust.html
http://dublincore.org/documents/dces/
http://dublincore.org/
http://dublincore.org/documents/2001/04/12/usageguide/glossary.shtml
http://dublincore.org/documents/2003/04/02/dc-xml-guidelines/
http://dublincore.org/documents/2008/09/01/dc-ds-xml/
http://www.ebxml.org/

[ECERA] European Commission – Education & Training – ERASMUS for Students – expe-
riencing Europe from a new perspective,
http://ec.europa.eu/education/erasmus/doc1051_en.htm

[ECTS] European Commission - Education & Training - lifelong learning policy - European
Credit Transfer and Accumulation System (ECTS),
http://ec.europa.eu/education/programmes/socrates/ects/index_en.html

[ECTSUG] ECTS Users’ Guide,
http://ec.europa.eu/education/lifelong-learning-policy/doc/ects/guide_en.pdf

[EDUPER] Internet2 Middleware Initiative: eduPerson & eduOrg,
http://middleware.internet2.edu/eduperson/

[ELM] European Learner Mobility, http://wiki.teria.no/confluence/display/

EuropeanLearnerMobility/European+Learner+Mobility

[EPXSD] Europass XML Schema v 2.0, http://europass.cedefop.europa.eu/

TechnicalResources/XML/xsd/europass_XML-schema-v2.0-description.pdf

[EPMOBXSD] Europass Mobility XML Schema draft,
http://europass.cedefop.europa.eu/mobility/MobilitySchema_DRAFT.xsd

[FEBXML] freebXML Registry – A Royalty-free Open Source ebXML Registry Project –
OASIS ebXML Registry RI, http://ebxmlrr.sourceforge.net/

[FVUSPEC] Finnish Virtual University: Standardization of educational data,
http://palvelut.virtuaaliyliopisto.fi/vy_standardization_eng.asp

[GPLCOMPAT] Various Licenses and Comments about Them – GNU Project – Free Soft-
ware Foundation (FSF), http://www.gnu.org/licenses/license-list.html

[ICEFACES] ICEfaces – Open Source Ajax, J2EE Ajax, JSF Java Framework,
www.icefaces.org

[INFOQ] Tomcat used by 64% of Java Developers,
http://www.infoq.com/news/2007/12/tomcat-favorite-container

[IEP] irisEduPerson Working Draft v: 0.2.1 - 2008-04-30, http://wiki.rediris.es/gtschema/
index.php/Iriseduperson

[ISCED] ISCED97, http://www.uis.unesco.org/publications/ISCED97

[ISO3166] ISO 3166 code lists,
http://www.iso.org/iso/country_codes/iso_3166_code_lists.htm

[ISO8601] ISO 8601:2004 Data elements and interchange formats – Information interchange
– Representation of dates and times

[ITUFI] ITU-T Rec. X.891, http://www.itu.int/rec/T-REC-X.891/

[ITUT] International Telecommunication Union - Telecommunication Standardization Sec-
tor, http://www.itu.int/ITU-T/

[JAXR] JSR 93: Java API for XML Registries 1.0 (JAXR),
http://jcp.org/en/jsr/detail?id=93

98

http://ec.europa.eu/education/erasmus/doc1051_en.htm
http://ec.europa.eu/education/programmes/socrates/ects/index_en.html
http://ec.europa.eu/education/lifelong-learning-policy/doc/ects/guide_en.pdf
http://middleware.internet2.edu/eduperson/
http://wiki.teria.no/confluence/display/EuropeanLearnerMobility/European+Learner+Mobility
http://wiki.teria.no/confluence/display/EuropeanLearnerMobility/European+Learner+Mobility
http://europass.cedefop.europa.eu/TechnicalResources/XML/xsd/europass_XML-schema-v2.0-description.pdf
http://europass.cedefop.europa.eu/TechnicalResources/XML/xsd/europass_XML-schema-v2.0-description.pdf
http://europass.cedefop.europa.eu/mobility/MobilitySchema_DRAFT.xsd
http://ebxmlrr.sourceforge.net/
http://palvelut.virtuaaliyliopisto.fi/vy_standardization_eng.asp
http://www.gnu.org/licenses/license-list.html
www.icefaces.org
http://www.infoq.com/news/2007/12/tomcat-favorite-container
http://wiki.rediris.es/gtschema/index.php/Iriseduperson
http://wiki.rediris.es/gtschema/index.php/Iriseduperson
http://www.uis.unesco.org/publications/ISCED97
http://www.iso.org/iso/country_codes/iso_3166_code_lists.htm
http://www.itu.int/rec/T-REC-X.891/
http://www.itu.int/ITU-T/
http://jcp.org/en/jsr/detail?id=93

[JAXWS-JAVA6] Metro Guide – Using JAX-WS 2.1 with JavaSE6,
http://jax-ws.dev.java.net/guide/Using_JAX_WS_2_1_with_JavaSE6.html

[Kra06] M. Krawczyński, Uniwersytecki System Obsługi Studiów. Biuro Wsółpracy z Za-
granicą: umowy i przyjazdy. Master’s thesis, Institute of Informatics, University of War-
saw, 2006.

[Lom08] R. Z. Łomowski, Uniwersytecki System Obsługi Studiów. Moduł wyjazdy. Master’s
thesis, Institute of Informatics, University of Warsaw, 2008.

[LSD] R. Willcocks, Why use data compression for your web service?, http://www.
l-space-design.com/Articles/Why_use_data_compression_in_web_services.aspx

[MACEDIR] MACE-Dir, http://middleware.internet2.edu/dir/

[MLO] Metadata for Learning Opportunities,
ftp://ftp.cenorm.be/PUBLIC/CWAs/e-Europe/WS-LT/CWA15903-00-2008-Dec.pdf

[MLO-AP] ECTS Information Package/Course Catalogue MLO Application Pro-
file, http://www.cen-isss-wslt.din.de/sixcms_upload/media/3050/Draft%20CWA%

20Application%20Profile.pdf

[MUCI] Międzyuniwersyteckie Centrum Informatyzacji, http://www.muci.edu.pl/

[PENTAHOWIKI] Enabling SSL in Tomcat – Pentaho Wiki,
http://wiki.pentaho.com/display/ServerDoc1x/01.+Enabling+SSL+in+Tomcat

[RFC1035] RFC 1035 Domain names – implementation and specification,
http://www.ietf.org/rfc/rfc1035.txt

[RFC2798] RFC 2798 – Definition of the inetOrgPerson LDAP Object Class,
http://tools.ietf.org/html/rfc2798

[RS3G] RS3G (Rome Student Systems and Standards Group), http://www.rs3g.org/

[RS3GWS] RS3G Workshop, Uppsala,
http://wiki.teria.no/confluence/display/RS3G/UPPSALA

[SCHAC] SCHAC. Attribute Definitions for Individual Data, Working Draft v: 1.4.0 - 2009-
03-26,
http://www.terena.org/activities/tf-emc2/docs/schac/schac-schema-IAD-1.4.0.pdf

[SCOUT98] [#SCOUT-98] BusinessLifeCycleManager.saveOrganizations(Collection organi-
zations) does not return exception list if failed to save,
http://issues.apache.org/jira/browse/SCOUT-98

[SCOUT99] [#SCOUT-99] OrganizationS returned by findOrganizations() contain at most
one name and description even if multiple names or descriptions are present,
http://issues.apache.org/jira/browse/SCOUT-99

[SCOUT101] [#SCOUT-101] Faults are not handled properly by Registry-
Impl.execute(JAXBElement<?> uddiRequest, URI endPointURI),
http://issues.apache.org/jira/browse/SCOUT-101

99

http://jax-ws.dev.java.net/guide/Using_JAX_WS_2_1_with_JavaSE6.html
http://www.l-space-design.com/Articles/Why_use_data_compression_in_web_services.aspx
http://www.l-space-design.com/Articles/Why_use_data_compression_in_web_services.aspx
http://middleware.internet2.edu/dir/
ftp://ftp.cenorm.be/PUBLIC/CWAs/e-Europe/WS-LT/CWA15903-00-2008-Dec.pdf
http://www.cen-isss-wslt.din.de/sixcms_upload/media/3050/Draft%20CWA%20Application%20Profile.pdf
http://www.cen-isss-wslt.din.de/sixcms_upload/media/3050/Draft%20CWA%20Application%20Profile.pdf
http://www.muci.edu.pl/
http://wiki.pentaho.com/display/ServerDoc1x/01.+Enabling+SSL+in+Tomcat
http://www.ietf.org/rfc/rfc1035.txt
http://tools.ietf.org/html/rfc2798
http://www.rs3g.org/
http://wiki.teria.no/confluence/display/RS3G/UPPSALA
http://www.terena.org/activities/tf-emc2/docs/schac/schac-schema-IAD-1.4.0.pdf
http://issues.apache.org/jira/browse/SCOUT-98
http://issues.apache.org/jira/browse/SCOUT-99
http://issues.apache.org/jira/browse/SCOUT-101

[SGWV] C. Sgouropoulou, S. Grant, S. Wilson, G. Vangen, European Learner Mobility Stan-
dardization: Sketching The Landscape, http://www.fs.usit.uio.no/presentasjoner/
EUNIS2009/FS-09-092_Sgouropoulou-Grant-Wilson-Vangen-113.pdf

[SITI06] A. Siaperas, P. Tissot, A Distributed System for Issuing Europass Mobility Docu-
ments. Retrieved: October 26, 2009, from: http://wiki.teria.no/confluence/download/
attachments/13697206/Distributed+System+for+EUROPASS.doc?version=1

[SOAP11] Simple Object Access Protocol (SOAP) 1.1,
http://www.w3.org/TR/2000/NOTE-SOAP-20000508/

[Ste07] M. Steinbach,
Web Services, Output Formats and GZIP Compression, http://www.sendung.de/

archives/2007/04/09/web-services-output-formats-and-gzip-compression/

[UDDITC] OASIS UDDI Specification TC,
http://www.oasis-open.org/committees/uddi-spec

[UIS] UNESCO Institute for Statistics, http://www.uis.unesco.org/

[UNICON] J. Wieland, moveon presentation for moveon Conference 2009 held on July 01,
2009 at University of Stockholm.

[TOMCATSSL] Apache Tomcat 6.0 – SSL Configuration HOW-TO,
http://tomcat.apache.org/tomcat-6.0-doc/ssl-howto.html

[WaBr05] C. Walls, R. Breidenbach, Spring in Action, Manning 2005.

[WIKIPEDIA] Wikipedia, the free encyclopedia, http://en.wikipedia.org/

[WSDL] Web Service Definition Language (WSDL), http://www.w3.org/TR/wsdl

[WSS] OASIS Web Services Security (WSS) TC,
http://www.oasis-open.org/committees/tc_home.php?wg_abbrev=wss

[WSSP] WS-SecurityPolicy 1.2, http://docs.oasis-open.org/ws-sx/ws-securitypolicy/
200702/ws-securitypolicy-1.2-spec-os.html

[WST] WS-Trust 1.4, http://docs.oasis-open.org/ws-sx/ws-trust/v1.4/ws-trust.html

[XMLSCHEMA] W3C XML Schema Part 0: Primer Second Edition,
http://www.w3.org/TR/xmlschema-0/

100

http://www.fs.usit.uio.no/presentasjoner/EUNIS2009/FS-09-092_Sgouropoulou-Grant-Wilson-Vangen-113.pdf
http://www.fs.usit.uio.no/presentasjoner/EUNIS2009/FS-09-092_Sgouropoulou-Grant-Wilson-Vangen-113.pdf
http://wiki.teria.no/confluence/download/attachments/13697206/Distributed+System+for+EUROPASS.doc?version=1
http://wiki.teria.no/confluence/download/attachments/13697206/Distributed+System+for+EUROPASS.doc?version=1
http://www.w3.org/TR/2000/NOTE-SOAP-20000508/
http://www.sendung.de/archives/2007/04/09/web-services-output-formats-and-gzip-compression/
http://www.sendung.de/archives/2007/04/09/web-services-output-formats-and-gzip-compression/
http://www.oasis-open.org/committees/uddi-spec
http://www.uis.unesco.org/
http://tomcat.apache.org/tomcat-6.0-doc/ssl-howto.html
http://en.wikipedia.org/
http://www.w3.org/TR/wsdl
http://www.oasis-open.org/committees/tc_home.php?wg_abbrev=wss
http://docs.oasis-open.org/ws-sx/ws-securitypolicy/200702/ws-securitypolicy-1.2-spec-os.html
http://docs.oasis-open.org/ws-sx/ws-securitypolicy/200702/ws-securitypolicy-1.2-spec-os.html
http://docs.oasis-open.org/ws-sx/ws-trust/v1.4/ws-trust.html
http://www.w3.org/TR/xmlschema-0/

	Introduction
	The Mobility Project
	Basic terms
	Abbreviations
	Overview

	Related standards
	Europass
	Metadata for Learning Opportunities and its derivatives
	SCHAC
	Finnish Virtual University specifications

	Requirements analysis
	Definitions
	Business processes
	Making an agreement
	Making nominations
	Creating initial LA
	Updating LA
	Creating ToR
	Finalizing mobility

	Requirements specification
	Functional requirements
	Non-functional requirements
	Assumptions

	Similar projects
	Products of QS unisolution
	moveon
	moveonnet

	Europass Mobility System

	Architecture and design
	WSDL Document
	WSDL standard overview
	WSDL
	XML Schema
	SOAP

	Overview
	Conventions
	Vocabulary
	Helper types
	Identifiers
	Personal data types
	Organization-related types
	Course-related types
	Agreement-related types

	Methods
	Agreement-independent methods
	Agreement-dependent methods

	Implementation
	Technologies
	Apache Tomcat
	Spring Framework
	Apache Camel
	Apache CXF
	Apache jUDDI
	MySQL
	Apache Scout
	Apache Qpid
	ICEfaces
	JavaScript addons

	Tools
	NetBeans
	Eclipse
	Apache Maven
	Subversion (SVN)
	Liquid XML Studio Community Edition
	UML
	Drawing tools

	Components

	Summary
	Goals achieved
	Future work
	Integration with USOS
	WSDL
	Implementation

	Acknowledgements

	Documentation
	Overview
	General notes

	Getting started
	Installation
	Running

	Testbed
	Modifying requests routing -- mobility-server-transport
	Adding response files to mobility-server-transport

	Other tasks
	Compilation
	Internationalization
	Adding sample data files to mobility-client-web
	Adjusting transport to non-Oracle RDBMS
	Modifying WSDL

	User's guide
	Mobility Client web interface
	Mobility Server web interface

	DVD Contents
	Bibliography

