
A FLEXIBLE DATABASE AUTHORIZATION SYSTEM

Bazyli Blicharski, Krzysztof Stencel
b.blicharski@students.mimuw.edu.pl, stencel@mimuw.edu.pl

Institute of Informatics, Warsaw University
Warsaw
Poland

Abstract
In this paper we present an authorization mechanism for a
relational database. It allows defining the user privileges
exact to a table row. To implement that we used the
INSTEAD triggers installed on views. This authorization
system is an interesting application of such triggers. The
user privileges are organized into parameterized roles that
can be instantiated and/or inherited by other roles.

Key Words
database security, role, privilege, view, INSTEAD trigger

1. Introduction

The users cannot be granted unlimited access to all
information in a database. It is true for a lot of reasons —
some data must be secret and there is a danger of
intentional or accidental data destruction. The heart of an
information system is a database. Software engineers have
to solve problems concerned with the access privileges
granted to the database users. This was also the case of
USOS i.e. the student management information system
used by many Polish universities [1, 2, 3]. USOS is a
large system that encompassed the affairs of the whole
school and has many users. Therefore an authorization
mechanism for this system was inevitable. Later on we
explain why the standard authorization mechanisms
provided by database vendors were not sufficient for this
purpose. We decided to build a discretionary access
control system [4, 5].

Unfortunately at the beginning USOS was a small system
designed for one faculty only and was crafted without
taking into account the need to authorize the access to
data for users. Appropriate features had to be added to the
installed and working software. Those features had to be
introduced under some assumptions that allowed
minimizing necessary changes in the existing source code
of the system.

Before the decision to add authorization to the system was
taken, one graphical interface had been built that had been
intended for all users. This interface had been written in
Oracle*Forms and had referenced specific names of

database objects. To avoid radical rewriting of the
existing code we assumed that we would not change the
users interface and allow it to reference the same names
of database objects after the introduction of authorization
system. We did it by means of views and synonyms. The
forms reference the same name. However, before it was
the name of a table and now it is a synonym that points to
a view based on the same original table. The assumption
of not changing the referenced names had another
consequence—the solution could not have been based on
the client software but it had to be deployed on the
database server side. Of course we could not also change
the DBMS used and we had to continue with the same
vendor (in our case Oracle).

The development of an authorization system under such
assumptions was not a trivial task. As a result we obtained
very flexible software that allows defining the access
privileges exact to one column and one row. During
construction of the system we heavily used the
capabilities of the modern DBMS, i.e. updateable views
with INSTEAD triggers. The produced solution is an
interesting application of these capabilities. Furthermore,
this authorization system is not dependent on USOS and
can be used with any database schema.

The solution presented in this paper is written for DBMS
Oracle. Unfortunately SQL standard [6, 7] does not cover
things like triggers, so it is impossible to create a portable
solution that works with any database that conforms to
SQL standard. However, with some effort one can tailor
the described authorization system to any DBMS that
provides updateable views and INSTEAD triggers.

We designed our solution before Oracle9i with VPD
(virtual private database) [8] was released. VPD allows
implementing such flexible authorization systems with
polices in the form of stored procedures that can be
associated with database objects. In our opinion, our
solution is more efficient, since in VPD every access to
table causes a call to a stored procedure. This is slower
than just referencing a view like in our system.

The presented system was built as the result of faulty
engineering procedure, i.e. the initial omission of the
necessity of authorization system. However, as the effect

we have an innovative solution for the positive scenario.
The application programmer creates software for the user
that is allowed to do everything. The developer does not
care for the access control at all and does not have to
include it into the code. He can proceed in this way,
because he knows that a transparent authorization system
will “customize” the code to the real access rights of the
particular user. It is very important because authorization
issues concern every little element of any commercial
application software. Thus we have a design pattern that
can be widely used.

SQL standard [6, 7] includes some mechanisms of access
control (roles) but they are insufficient. By means of
GRANT commands one can give access rights to the
whole table, view or column, but not particular rows. One
can say that the solution are views (each user gets the
view she can view or modify) and finish discussion here.
Many information systems (there is USOS among them)
have at least hundreds of users and hundreds of tables that
make dozens of thousands of views. The management of
such a set of views is not a trivial task. The system
presented in this paper allows creating and managing
appropriate views easily.

In the described authorization system privileges are
grouped into roles. Roles are granted to the users. Roles
can have parameters because usually there are many users
with the same template of privileges but concerning
different areas. The privilege to see all students of a
faculty is an example of such a template. One may need to
define a template role with the parameter being the
faculty name and instantiate it for different faculty.
Another necessary feature is the possibility to combine
privileges of several roles in one role (e.g. for roles that
are needed to serve multi-faculty curricula). In this paper
we call it role inheritance. The presented authorization
system includes both features—role parameterization and
role inheritance. These mechanisms proved very useful in
practice.

More precise information can be found in thesis [9]. The
code of the solution is available with the distribution of
USOS [10]. There one can also find the license
information.

2. Possible solutions

We decided to use as much of SQL as it would by
possible. We assign privileges to the SQL roles. The users
are granted privileges through those roles. The user
granted more than one role has all privileges of these
roles.

A privilege (either to see or modify) is defined by a
logical row condition that limits the set of rows where the
operation could be applied and the list of visible or
modifiable columns.

After one had defined a role as a set of privileges, she
could grant that role many times to users and make
another role inherit from that role. This largely enhances
the possibility of reuse and the convenience of using the
authorization system.

We considered several possible solutions to the problem.
One of them was excluded by our initial assumptions—
the one with access control executed at the client side
(e.g. by forms). This solution is also unacceptable from
the security reasons. An intruder could use another
interface (e.g. command-line interpreter) to the database
and in this way bypass the security checks hardwired into
the forms.

The other idea was to add auxiliary tables with the
information on access rights. A user would be granted
views. Each of those views would be the join of the
original table and the auxiliary table with the filtering
condition dependent on the username. DML operations
would be overridden by INSTEAD triggers that would
consult auxiliary tables for security issues. This solution
seems is inefficient, because every update of the original
table requires a corresponding update of the auxiliary
table.

The selected solution was based on views [11, 12] that
present the user with the data she has access to. The user
is granted the views that fake the original tables. Such a
view is a selection from the original table with the
WHERE expression being the corresponding row
condition defined for the role of the user. In fact the views
have automatically generated names and users have
synonyms that point to those views. The name of such a
synonym is the same as the name of the original table. As
with previous solution DML operations are overridden by
INSTEAD triggers with built-in conditions connected
with the privileges of a role. In this case the triggers do
not consult any additional data. All necessary security
information is hardwired into them.

INSTEAD triggers were necessary in this solution
because we allow row conditions with subqueries. In SQL
standard [6, 7] there is a limit that updateable views must
not have subqueries. If we did not use INSTEAD triggers
and rely on the view updateability of SQL, the views with
more complex conditions (especially with subqueries)
would not be updateable.

3. Implementation

All the database objects (tables, views, sequences and
stored procedures) under access control belong to one
designated user called the owner of table. For security
reasons the table owner has not CREATE SESSION
privilege, so no one can log on into this schema.

Another special user called the administrator of roles is
given the read (SELECT) and write (INSERT, UPDATE,
DELETE and EXECUTE) privileges to the data in all the
objects of table owner. The administrator of roles does not
have the privilege to modify the structure of the objects of
the owner of tables (ALTER). She is granted those
privileges with the possibility to propagate them (GRANT
OPTION). It the administrator of roles who is the
dispenser of privileges for the regular users.

The administrator of roles owns all the database objects
used by the authorization system, i.e. views and
INSTEAD triggers. When one defines a privilege of a role
a view is created in the schema of the administrator of
roles. The view is based on the table concerned by the
privilege. The users that have this role are granted access
to this view in the administrator’s schema. In their
schemata synonyms are created that point to this view.
The synonyms have the same name as the original table
concerned by the privilege. This way all the users
reference the database objects by the same name.

The administrator of roles has graphical interface that
facilitates creation of the views, INSTEAD triggers and
synonyms. All these objects are created automatically
after the administrator defines the kind of the privilege,
row condition and the limiting list of columns.

The user can be granted more than one role. However at
the given moment she can exercise privileges of one
chosen role. We call it the default role. If a user wants to
have access rights of some other of her roles, she can
switch the default role in her graphical interface.

4. Table privileges

The authorization for all the objects of the owner of the
tables is based on the same idea of administrator’s
mediation. In this chapter we describe the authorization in
the most interesting case of the tables. The authorization
for other objects is analogous [9, 10].

The users access the tables of the owner of tables by
means of the views defined by the administrator of roles.
The authorization mechanism is based on the proper
construction of these views and INSTEAD triggers
installed on them. Such a view is created for every pair
role-table (if and only if the role has any privileges to this
table). The user has synonyms to all views of her role, so
whenever she references a table name, she in fact calls the
appropriate view of the administrator of roles.

If a role has the SELECT privilege to the whole table, the
view that shows all the data is created and the role is
granted the SELECT privilege on this view.

If a role has the SELECT privilege to some subset of the
data in the original table (limited by the row condition
and/or the list of accessible columns), the created view
shows the data from the accessible columns and the
NULL values in the non-accessible columns. The row
condition becomes the WHERE expression of the view.
These NULL columns are required so that the view has
the same structure as the original table.

If a role is granted at least one of the write privileges
(INSERT, UPDATE and DELETE) to all the data in a
table, a view is created with all the data form the original
table. This view is very simple (one table and no WHERE
expression), thus the view is updateable. The role gets

e appropriate write privileges to this view.

TAB 1

TAB 2

TAB 3

TAB n

P 1 1

P 1 2

P 1 m

TAB 1

TAB 2

TAB n

Owner of tables Administrator of
roles

Regular user

ROLE_1 (Role)
simply th
Fig. 1 Access control for tables

If a role is granted INSERT or UPDATE privilege to all
the rows but only a subset of columns, this role gets the
INSERT or UPDATE privilege to these columns. We use
here the native features of DBMS Oracle that allow
granting such privileges to a subset of columns.

If a role is granted at least one of the write privileges
(INSERT, UPDATE and DELETE) to a subset data in a
table defined by the row condition, these privileges are
handled by automatically generated INSTEAD triggers.
The trigger body includes the row condition. At each
update the trigger checks whether the row condition
evaluates to false (that means that the update is illegal)
and possibly raises an exception. If the update is legal, the
trigger introduces it into the original table.

Of course some of those views could be updateable as
defined in SQL standard, but we do not make use of it.
Every privilege with the row conditions is connected with
INSTEAD triggers. This could be seen as a disadvantage.
In fact most row conditions in the authorization system
deployed for USOS contains subqueries, so this
assumption does not diminish the system efficiency.

Let us consider the famous tables EMP and DEPT. A role
can insert a row into table EMP if and only if this row
references the sales department by its foreign key
(EMP.DEPTNO). The row condition for the insert
operation will be:

 exists (select ‘x’ from DEPT d
 where :new.DEPTNO = d.DEPTNO
 and d.DNAME = ‘Sales’)

In this case the generated INSTEAD trigger will be as
follows (P_564_54531 is the name of the view for
table EMP and role SALES_HR):

CREATE TRIGGER P_564_54531_INS_TRI
-- insert trigger for role
-- SALES_HR on view for table EMP
 INSTEAD OF INSERT ON P_564_54531
 FOR EACH ROW
BEGIN
INSERT INTO EMP
 (EMPNO,ENAME,JOB,MGR,HIREDATE,
 SAL,COMM,DEPTNO)
 (select
 :new.EMPNO,:new.ENAME,:new.JOB,
 :new.MGR,:new.HIREDATE,:new.SAL,
 :new.COMM,:new.DEPTNO
 from dual where

 exists (select ‘x’ from DEPT d
 where :new.DEPTNO = d.DEPTNO
 and d.DNAME = ‘Sales’);

IF SQL%ROWCOUNT=0 THEN
 RAISE_APPLICATION_ERROR(-20000,’…’);
END IF;
END;

On Fig. 1 the schema of the access control for tables is
shown. The schema of the owner of tables contains tables
TAB_1, TAB_2, TAB_3… TAB_n. Objects P_1_1,
P_1_2… P_1_m are the views owned by the administrator
of roles. TAB_1, TAB_2… TAB_n inside the regular
user’s schema are her private synonyms pointing to the
corresponding views of the administrator of roles.
ROLE_1 is a role defined by the administrator.

Dashed arrows between the tables of the owner of tables
and the views of the administrator of roles indicate what
tables are these views based on. Dashed arrows between
these views and the synonyms of the regular user indicate
what view these synonyms point to. The solid arrows
show the grants—access to views of the administrator is
given to role ROLE_1 and this role is granted to the
regular user. The dashed arrow between the role and the
user means that this role is the default role of the user.

On Fig. 1 role ROLE_1 is granted certain privileges to
tables TAB_1, TAB_2…TAB_n. Appropriate views in
the administrator’s schema has been created (P_1_1,
P_1_2… P_1_m). They are based on the corresponding
tables. These views have been granted to role ROLE_1.
Access rights to these tables are executed by the structure
of these views and possibly the INSTEAD triggers
installed on them. Although the regular user has not direct
privileges to the original tables, she can references their
original name, because the synonyms provide the proper
mapping between all the objects used by the authorization
system.

Role ROLE_1 has no privileges to table TAB_3, thus no
view has been created for this role and this table. The user
does not have a private synonym for this table as well.

5. Inheritance

The roles are sets of privileges. Data in big databases is
usually subdivided into various logical areas and it is
reasonable to group privileges the same way. This ought
to be done to guarantee security, integrity and logical
clarity. Sometimes the user of database should have
access to more then one data area at the same time. In the
presented authorization system she cannot exercise
privileges of more then one role at the same time.
Proposals of such solution have already been presented
[13, 14].

To solve this problem we introduced hierarchical roles
into the system. We let the role's privileges to be inherited
by the other roles. A role can inherit from several other
roles. The set of privileges of this role is the sum of its
privileges and the privileges of the inherited roles. For
example, if role A has the select privilege to attributes C1,
C2 and C3 of table T and inherits from role B, which has
select privileges to attributes C3, C4 and C5 of table T,

then all users having role A should be able to select C1,
C2, C3, C4 and C5 attributes from table T. The same idea
concerns row conditions. The row condition for a table
and a role is the disjunction of row conditions of this role
and of all inherited roles for this table. This way we can
combine roles into bigger roles. This facilitates reuse and
allows building a sound structure of a concrete instance of
the authorization system.

The role hierarchy must not contain cycles. Each change
of a role definition that is directly or indirectly inherited
by some other roles has to be propagated immediately to
the objects of inheriting roles. This process might not
stop, if the hierarchy has cycles.

6. Parameterization

The presented authorization system also contains the
parameterization facilities. Row conditions often contain
some constants. These constants are characteristic for
certain roles (e.g. the faculty code for a role for a clerk at
this faculty). If there were no parameters, the
administrator of roles would have a hard time while
changing the code or creating the role for a brand new
faculty.

In such a situation parameterization can be helpful. A role
can have several parameters. These parameters are
assigned values in the same role. One could treat these

parameters as constants, because they are just symbolic
names for constant values in roles. These parameters can
be used inside row conditions. Each change of the value
of parameter causes rebuilding of administrator’s views

and triggers connected with row conditions containing the
parameter’s reference.

We decided to call such constants parameters, because of
the possibilities offered by the combination of them and
inheritance of roles. A role with parameters behaves like a
template and an instance. It can be “called”, because it has
parameters; it is a stand-alone instance, because all the
parameters are bound to values.

When a role inherits from some other role, it can override
values of the parameters of the inherited role. The
inherited role becomes then a template and the inheriting
role is its instance.

Figure 2 shows an example of such an inheritance
hierarchy with parameters. We use UML notation with
roles as classes and inheritance relations as the
dependencies with stereotype «calls». Role A inherits
from roles B and C. It assigns param1 as “LAO” and
does not assign anything to param2 (we indicate it by
assignment of NULL to param2). Thus role A “calls”
both roles B and C with param1 equal “LAO” and with
empty value of param2. In the inherited row conditions
from B and C parameter param1 is equal “LAO” but the
values of param2 are retained the original values and are
equal to “ELLE” and “RORK” respectively. The row
condition for role A and a given table is the disjunction of
the row conditions from A (with param1 = “LAO”), the
row condition from B (with param1 = “LAO” and

param2 =“ELLE”) and the row condition from C (with
param1 = “LAO” and param2 =“RORK”).
This way the innocent constants turned into parameters
and constitute a powerful facility to structure the roles.

Fig. 2 The inheritance hierarchy and parameters

This works on each level of inheritance hierarchy. Of
course inheritance relation does not influence the views
and triggers of the inherited roles (B and C in our
examples), which use the original values of their
parameters (param1 = “ALI” ∧ param2 =“ELLE” in B
and param1 = “ELLE” ∧ param2 =“RORK”). The
change of the parameter's value in the inherited role may
be a change of the definition of the inheriting role; thus it
may be propagated down the hierarchy (unless this
parameter is immediately overridden).

7. Conclusion

In this paper we presented a flexible database
authorization system, which was built as a part system
USOS. However, the obtained system is independent of
USOS and can be applied to any database schema.

One of the most interesting aspects of this software is the
use of INSTEAD triggers as the tool to code updateable
views. Such triggers made it possible to update views of
any complexity and to abstract from the syntax conditions
forced on them by SQL standard. The limitations on
updateable views defined in [7] are too severe and such
conceived view updateability has marginal meaning. The
only general solution is based on INSTEAD triggers that
allow any view to be updateable.

The system is very flexible since it contains powerful
combination of inheritance and parameterization that
allows building clear and sound structures of privileges.

8. Acknowledgement

We are grateful for Janina Mincer-Daszkiewicz who
strongly encouraged us to write this paper and present the
results of our labor.

References

[1] J. Mincer-Daszkiewicz, USOS: Student Management
Information System for Polish Universities, SAIAC’ 2002.
Joint Int. Conference on State of The Art in
Administrative Computing, Tartu, Estonia, 2002. See:
http://usos.mimuw.edu.pl/tartu.pdf.

[2] J. Mincer-Daszkiewicz, Student Management
Information System for Polish Universities, Eunis 2002,
The Eighth Int. Conference of European University
Information Systems, Porto, Portugal, 2002. See:
http://usos.mimuw.edu.pl/eunis-2002/eunis2002.pdf

[3] Home page of USOSweb, Warsaw, Poland,
http://usosweb.mimuw.edu.pl.

[4] E. Bertino, P. Samarati, S. Jajodia, An Extended
Authorization Model for Relational Databases, IEEE

Transactions on Knowledge and Data Engineering (1):
1997, 85-101.

[5] R. S. Sandhu, Q.Munawer, How to Do Discretionary
Access Control Using Roles. ACM Workshop on Role-
Based Access Control, 1998: 47-54

[6] C. Date, J. Darwen, A Guide to the SQL Standard, 4-th
Edition (Addison-Wesley Longman 1997).

[7] International Organization for Standardization (ISO),
Database Language SQL. ISO/IEC 9075:1992.

[8] K. Browder, M. A. Davidson, The Virtual Private
Database in Oracle 9i R2 Understanding Oracle 9i
Security for Service Providers – An Oracle White Paper,
January 2002, http://otn.oracle.com/deploy/security/
oracle9iR2/pdf/VPD9ir2twp.pdf

[9] M. Makaroś, USOS. Roles (in Polish), M.Sc. thesis.
Institute of Informatics, Warsaw University, Warsaw,
Poland, 2002. See: http://usos.mimuw.edu.pl/PraceMagis
terskie/makaros/makaros.zip.

[10] USOS Distribution http://usos.mimuw.edu.pl/Dystry
bucje/dystrybucja.html.

[11] S. Barker, A. Rosenthal, Flexible Security Policies in
SQL, DBSec 2001, 167-180.

[12] D. E. Denning, S. G. Akl, M. Morgenstern, P. G.
Neumann, R. R. Schell, M. Heckman: Views for
Multilevel Database Security. IEEE Symposium on
Security and Privacy, 1986, 156-172.

[13] C. Ionita, S. Osborn, Privilege Administration for the
Role Graph Model, DBSec 2002, 15-25.

[14] S. Osborn, Integrating role graphs: a tool for security
integration, Data & Knowledge Engineering 43 (3), 2002,
317-333.

