
Teaching Software Engineering by Developing Commodity Software

Janina Mincer-Daszkiewicz
Faculty of Mathematics, Computer Science, and Mechanics,

Warsaw University, Poland

Abstract

Software engineering is one of the main disciplines of com-
puter science. It plays a crucial role in computer science edu-
cation, especially on a graduate level. However as important
as software engineering education is, it is the subject of con-
stant discussions, changes, and controversies.

At the Faculty of Mathematics, Computer Science and Me-
chanics of Warsaw University we launched a software project
with the aim to produce an integrated student management in-
formation system (called USOS) for the faculty, the university
and other Polish public universities. It is a huge database-
oriented software application done partly in Oracle technol-
ogy and partly in open source technology (Internet modules).
The system is designed and developed by computer science
students supervised by lecturers and Ph.D. students. For the
last three years software engineering education at the faculty
was focused around USOS development. This process is man-
ifold — it takes part on a variety of courses, many methods
and tools of software engineering are tested along the way,
possibilities for research experiments arise. Students learn
by applying standards and being exposed to good practices.
USOS provides a unique opportunity to integrate education in
software engineering with production of commodity software.
That model of software engineering education is very success-
full and will be continued.

Keywords: Higher education; teaching software engineer-
ing; software engineering in the large; USOS — University
Study-Oriented System.

1 Introduction

Software engineering is one of the main disciplines of com-
puter science. Every profesional project leader or member of
a software team should know its principles, methods and tech-
niques. Lack of that knowledge is the cause of delayed, over
budget, or failed projects.

No wonder that software engineering plays a crucial role in
computer science education, especially on a graduate level.
It is being taught on computer science faculties all over the
world. However as important as software engineering educa-
tion is, it is the subject of constant discussions, changes, and
controversies.

The problem seems to lay at the very roots of software en-
gineering. It demands virtues and abilities which should be
gained by experience and as such are hard to be obtained in
“artificial environments” of university classes and labs.

One of the possible ways of practicing software engineering
is to make students take part in an industry project supervised
or co-supervised by people from academia. However such
projects, if ever launched, rarely succeed. Industry people sel-

dom treat students as valuable team members. They always
put business goals ahead of didactic goals. In countries with
emerging economics, like Poland, software companies com-
pete for clients and are not interested in going into risky busi-
ness of cooperation with an university partner.

The other threat is that students involved in industry projects
get detached from the university environment and academic
duties. It is hard to put aside business rules in order to achieve
academic purposes. Students who get too much involved in
off-university duties lose the possibility to finish Master The-
sis on time. In Poland students of computer science often start
professional life on their 3rd or 4th year, however most of
them do not get diploma on time.

Is there any solution to this dillema? At the Faculty of Mathe-
matics, Computer Science and Mechanics of Warsaw Univer-
sity we launched a software project with the aim to produce a
student management information system (SMIS) for the fac-
ulty, the university and other Polish public universities. It is a
huge database-oriented software application done partly in Or-
acle technology and partly in open source technology (Internet
modules). The project is supervised by faculty teachers and
Ph.D. students. The computer science students of the faculty
are programmers, sub-project leaders, testers, documentation
writers, users etc. They all learn software engineering meth-
ods and techniques by practicing software engineering in the
large, taking part in the real life software project, producing
commodity software at academia and for academia. The de-
veloped system, USOS (University Study-Oriented System),
is currently being used at pilot departments of a few Polish
public universities and is being deployed at the others. USOS
is on the one hand the vehicle of software engineering educa-
tion, and on the other — the way towards Virtual University.

This paper is about a new model of software engineering edu-
cation being adopted at the largest Polish university, with the
best faculty of computer science in Poland, which students for
many years took part in finals of ACM collegiate contest in
programming and this year won a golden medal. We think
that we found a successful method of improving the training
of software professionals.

2 Problems of software engineering
education

The main goal of software engineering courses offered at uni-
versities as part of Computer Science curriculum is to make
students practice “programming in the large” (cf. [13]). The
emerging problems are that programming in the large means
taking part in real life projects, aiming at the production of
commodity software. Students rarely have an opportunity to
participate in all stages of the software process: specifica-
tion, verification, design, implementation, testing, and main-



tenance. They are not motivated to meet the requirements,
work according to time limits, bother for quality of the final
product, take part in its deployment and maintenance.

On university courses students get an opportunity to prac-
tice methods and tools, but are not exposed to REAL prob-
lems. What is even worse they may get an impression that
there aren’t any — all problems seem to be well defined, in-
tuitively modeled by known techniques and methods, soluble
in a semester (cf. [8]). Students often consider subjects usu-
ally taught on software engineering courses as being obvious
and/or expressed in fuzzy ways. However real systems rarely
have neat solutions and the requirements for those systems
are influenced by many technical and non-technical factors.
Aspects like management, organization, leadership, planning,
communication, cooperation to large extent are dominant fac-
tors of success in software engineering projects.

To solve the problem computer science curriculum should
drift towards “project based” as opposed to “content based”.
Statistics show that around 90% of the course contents is for-
gotten if not applied immediately. Experience sticks much
longer.

Students should get acquainted with methods, techniques, and
tools, but they also should learn how to function on a team,
manage individual and team tasks and projects, communicate
effectively orally and in writing, formulate or defend a pro-
posal, write memo, prepare an agenda for meeting, etc.

The existing discrepancy between university education and
industry needs is at least partly responsible for the criti-
cism made of many university courses by employers that the
courses do not equip students for real work.

3 USOS as a testbed for practicing
software engineering

It all started in November 1999, when the New Educational
Tools Tempus JEP project JEP-14461-1999 was launched
(cf. [6, 10, 11, 12]). The project was partly sponsored by the
European Union and it gathered 17 Polish public universities1

around the common goal of unifying university administra-
tion procedures and producing common student management
information system. The greatest challenge of the project was
to conduct requirement engineering at the participating univer-
sities and come up with the software package which would be
accepted by all partners, used at the university level, and possi-
bly approved by the Ministry of Higher Education as standard.

One of the very first conclusions was that none of the software
packages currently in use could be easily modified to fulfill the
needs of all participants. It also quickly became clear that no
Polish software company had been able to provide the appli-
cation software needed for the national level university-wide
database with functionality requested for SMIS, mostly due
to the limited budget of the project, but also because of the

1In Poland there are 17 state higher education institutions called
universities. All of them participated in the project. Detailed informa-
tion on the Polish system of higher education is available in [4].

lack of expertise on study programs and procedures involved
in university management.

The help came from the authorities of the Faculty of Mathe-
matics, Computer Science and Mechanics at Warsaw Univer-
sity, who decided that the needed software would be designed
and developed in-house, by the teachers and students of the
faculty. By engaging students as programmers the problem
of the low budget could be solved. And of course no soft-
ware company could compete on the ground of expertise in
academic procedures with the team of teachers, students, and
authorities settled in university environment.

However the production of the system was not the only aim to
be achieved, and even not the most important one. The main
and strategic goal of academia is to teach and do research. By
launching the project of that size and time scale the testbed has
been created for working out new models of teaching com-
puter science and driving research in the area of software en-
gineering. It also seemed to be an on-going project for many
years to come (mostly due to changes in requirements so typ-
ical for education institutions, low level of automation of ad-
ministration procedures, and expected changes in work style
driven by deployment of a large software application). The
software could be designed, developed, deployed, and main-
tained at the university providing the unique opportunity of
involving students of many generations in all stages and activ-
ities of the project.

The vice-dean of the faculty was appointed a project leader.
Being a high rank administration officer on the one hand
and software engineer and academic teacher on the other she
could state and prioritize requirements, make decisions, en-
force their implementation and keep proper balance between
business and didactic goals.

This is not the first time students at university take part in pro-
ducing commodity software. What makes USOS project dif-
ferent from the others is the scale and multilevel integration
of design, development and deployment activities with educa-
tion.

In the sections to follow we describe various aspects of the
project, focusing on those which influence software engineer-
ing education.

3.1 USOS development as an integral part of
computer science curriculum

USOS development has become an integral part of computer
science education in our faculty. It involves many activities
carried out on various courses and a plethora of educational
models. We could say that students take part not just in par-
ticular courses but in a whole process. In this section we are
going to describe it.

Computer science students at Warsaw University at the sec-
ond year of their studies take an obligatory course onSoft-
ware engineering. On lectures they learn the theory of soft-
ware engineering (usually according to some classic textbook,
e.g. [13]). On accompanying labs they follow all steps of the
medium scale software project (this year they design the so-



lution for the train ticketing system), using Rational Rose set
of tools to draw diagrams, and a simplified version of RUP
(Rational Unified Process) as the leading methodology.

The first step towards more team-oriented experience they
make at the 3rd grade, taking the course onTeam program-
ming. For example two years ago one USOS module has been
designed and developed. In our faculty students first register
for courses and then choose between various groups scheduled
for each course (groups may be lead by different assistants and
take place at different days and times). The module for group
registration allows students to deliver priority lists of groups
they want to attend. Then it runs a special algorithm which
takes into account some ordering of students registered for the
courses (e.g. according to grade averages) and student priority
lists and distributes students among groups trying to avoid col-
lisions (e.g. appointing students to groups of various courses
which take place at the same time). This module was designed
and developed by teams of the 3rd graders. The module re-
quirements were first vividly discussed by students and aca-
demic teachers. The whole faculty voted for the best module
which then had been incorporated into USOS nad now is used
at the faculty. The winning team was obliged to deploy the
module. It turned out that so many practical problems arosed
during deployment and so many extra programming work was
necessary that in the end the module became a Master project
for the members of the team.

Evening students are exposed to USOS on the course onDe-
sign of very large data bases. They usually have some ele-
mentary knowledge of databases and SQL programming and
little experience with Oracle design and developer tools. They
are given various small tasks. Let us look at one example. The
USOS database was filled with the data transferred from the
old databases. However in the old ones the address had been
stored as one string, whereas in USOS we wanted to keep var-
ious parts of the address separately. Students were given a
task to write an SQL script for changing the structure of the
table and rewriting data from the old to the new. Students had
to apply some heuristics on how to correctly recognize vari-
ous parts of the address in the string. A few students did the
same task — their scripts were tested on real data and the per-
centage of correct conversions was determined. Then the best
script was run on the data exported from the old databases to
the USOS repository. The winning students not only got good
grades, but also an extra satisfaction.

Other students of the same course were given other tasks. For
example we decided to change the model of data concern-
ing description of program studies leading to various special
diplomas etc. Shortly speaking in a few places one-to-one
relations among entities were changed to many-to-many. This
change touched many tables, forms and reports. Students were
supposed to do thorough impact analysis of this change on the
database tables and user interface. They had to prepare scripts
for changing database structure and new versions of forms and
reports. All modifications were thorougly tested and then they
were integrated with USOS.

Another course which delivers USOS-oriented tasks isWeb
programming. USOS main database can not be accessed

through the web, however there is also a Web module, called
USOSweb ([7]). It is a separate application in a sense that it is
attached to a separate database kept on a separate server. It is
made in open source technology, like PHP and MySQL, and
many installations of USOSweb may run simultaneously, e.g.
one per each department of the university. Web databases are
partial copies of the main Oracle database. In particular highly
confidential personal data are not stored on the web, data are
available mostly for reading, and modifiable data comprise
only a small subset. Such architecture allows to avoid high
cost of licensing which would arose from permitting massive
access to the central database, It also increases scalability of
the solution (e.g. we may install one web database per faculty)
and the security (confidential data are only available to lim-
ited number of users and are not endangered by web access).
On the other hand, however, this architecture is more complex
from the technological point of view since databases have to
be synchronized by special algorithms and mechanisms.

Students taking part in the course onWeb programmingwere
working on search engines for USOSweb or database syn-
chronizers for synchronizing main Oracle database with In-
ternet databases. Since we steadily enlarge the amount of data
kept in the database and want to make it available to students
and academic professors, new tasks emerge of making these
data available through web browsers. The examples of such
data are detailed information on degree requirements, indi-
vidual requirements of student profiles, student progress, per-
sonalized class schedules. We drift towards the solution were
USOSweb plays a role of a Virtual Students Office, offering
integrated set of services.

A couple of Master projects concerning USOSweb were car-
ried out. The main examples are: a module delivering main
functionality of USOSweb (course catalog, electronic exami-
nation sheets, electronic transcripts of records), a module for
course registration, a module for course assessment, a com-
munication module which allows students taking particular
courses and course lecturers to communicate — it generates
group aliases and redirects incoming mail to e.g. cellular
phones or e-mail addresses (according to personal configura-
tion).

Most important modules were developed by students taking
part inMaster seminar on DatabasesandMaster seminar on
Software Engineering. Here are some examples:

1. RolesThe main subject of this project was the devel-
opment of the system of roles meant as privileges to
select, insert, delete, and/or update rows and columns
of database tables. Such roles can be freely defined in
USOS and then assigned to USOS users. Every user can
have a few roles assigned but only one of them is active
at a time. The whole USOS interface is transparent to the
system of roles. A user cannot read data it is not autho-
rized to by his role. When a user tries to modify records
he can select but not update, the “insufficient privileges”
message is being displayed and the operation is aborted.
The interface (Oracle forms) have to be designed and im-
plemented in compliance with these requirements (what
means that all Oracle programmers have to be aware of



them and write code in a proper way). The solution is
very flexible since no Oracle programming is involved
in defining a new role, and it can be done any time the
need arises.

2. Filters The system of roles solves the problem of au-
thorized access to subsets of data, but does not solve the
problem of having to deal with excessive amount of data.
What is needed is the flexible mechanism of filtering the
data. In USOS such functionality is delivered by a sys-
tem of filters. A filter has its name and can be defined by
some SQL statement. Filters can be freely made avail-
able to users, and various sets of filters can be accessible
on various Oracle forms. On each such form one of the
filters is defined as default. No Oracle programming is
involved in defining and configuring filters.

3. Requirements of study programsThat module deliv-
ers flexible mechanisms for defining requirements of
study programs. Compliance with requirements can be
checked for one student or for a group of students (e.g.
all 1st year students of mathematics).

Currently some Master projects in progress concern modules
for handling students dormitories, financial aid and scholar-
ships, class schedules, diploma supplement (a document es-
tablished by the European Commission, Council of Europe
and UNESCO/CEPES in order to improve the recognition of
educational credential). Smaller modules are developed as
Bachelor projects.

Recently we started a new experiment. A student writes a
specification of a new module — he gathers requirements,
prepares use cases, delivers them to the clients asking their
opinion, then prepares final version of the requirements spec-
ification. Next he designs the implementation and describes it
in another document. The documentation is passed to another
student with the task to develop the module strictly according
to the specification. The student-programmer generally does
not communicate with the student-designer. The completeness
and precision of the design is tested by the quality of the final
product. In this pilot experiment we test UML and Rational
Rose set of tools.

The early student projects were generally focused on produc-
ing particular functional modules. Recent projects are more
diverse, focused on design and methodology, more software
engineering oriented. The examples areDescribing USOS in
the Unified Modeling Language, Calibrating and maintain-
ing large scale databases, Designing user-friendly interfaces,
Standards for database applicationsetc. Software reengineer-
ing, data mining, database profiling, software modeling —
these are the topics we want to cover in future projects.

After three years of using USOS in a variety of faculties and
universities we also start to re-design and re-program some of
the modules. A Master project may thus consist in getting in-
formation on users’ satisfaction of the particular module and
coming up with the suggestion of new solutions and function-
alities.

Master and Bachelor Theses describing USOS modules have
determined layout and structure of chapters. Each thesis con-

tains, among others, technical documentation, user manual
and administrator manual of the module involved. Software
written has to adhere to standards (which were formulated in
one of the thesis).

3.2 Software engineering methods and techniques
involved in USOS development

In the beginning stage of the project it was developed in accor-
dance with the CDM Fast Track methodology ([3]), designed
by Oracle, which is a standard for enterprises conducted in
RAD technology. The important techniques described in the
paragraphs to follow were used in the project.

For each task in the project itspriority had been determined
andstrict time limits were specified for conducting this task.
This was particularly important due to the needs of the end-
users expecting deliverables on time, and due to psycholog-
ical aspect of keeping active involvement of participants and
developers.

Workshops andseminarswere very effective technique for
information gathering and decision making. Their particular
importance implied from the scale of the project involving uni-
versities spread all over Poland. We organized workshops at
least every few months to keep universities informed about the
progress made and to involve them in decision making about
the possible direction of software development. Students often
discuss their modules with tutors and colleagues, presenting
them on seminars.

Prototyping was used from a very early stage in the project.
The character of the project allowed us to deliver proto-
types quickly, soon after having agreed on the first func-
tional requirements. Prototypes were delivered to end-users
and helped in getting quick feedback on functionality and us-
ability of the product. Early prototypes offered limited pos-
sibilities for automation of various procedures for groups of
students (students could only be handled individually), sup-
ported only few most important reporting facilities and almost
non global statistics. Nevertheless they were used by admin-
istration officers who could comment on interface, test cor-
rectness of implemented routines, or point out missing op-
tions. The close contacts between designers, programmers,
and customers were one of the most valuable aspects of devel-
oping software in-house. In particular students could discuss
requirements with “users” — administration officers in their
department — having them often in the same building.

Iterative development was driven by feedback from end-
users. They worked with prototypes and came up with ideas
for modifications. Requirements were not fixed at the start
point of the project, but were developed along the way.

Since various tasks of the project were conducted by various
groups of students we separated those tasks on the basis of the
size of the group and time deadlines for the expected func-
tionality. Partitioning of the overall project into smaller tasks
was an important activity, driven by deliverables expected at
each milestone.

Last year due to growing scale of the project we decided to



start usingUML ([2]) and Rational Rose. Oracle design
tools play a main role in design and implementation phases
but do not support sufficiently the requirement analysis pro-
cess. The Unified Modeling Language can be applied to vari-
ous areas of software development, such as data modeling, en-
hancing practitioners’ ability to communicate their needs and
assessments to the rest of the team. UML can also be used
to describe the complete development of databases from busi-
ness requirements through the physical data model. In USOS
use cases modeled in UML become standard tools supporting
talks between developers and clients for working out system
requirements.

Practices applied in USOS in many respects match the rules
of Extreme Programming (cf. [1]). The most important ones
in USOS are: plan in a short run and in a long run, conform
to standards, make it simple, work closely with the clients,
integrate constantly, often deliver prototypes.

Students taking part in the project are exposed to various
methods, techniques and tools, have possibility to compare
them and judge their usefulness for various software engineer-
ing tasks and learn how important it is to adhere to the rules of
rigid software engineering routines. These methods and tools
are not just educational toys, they are real “products” used in
industry projects.

3.3 Educational benefits of the USOS project

Whenever we describe the scheme of system development ap-
plied in our faculty many doubt that it can work in a long run.
Negative examples are given of projects carried out in a uni-
versity environment which failed without delivering any use-
ful outputs. To our own surprise in our case the situation is
opposite. The longer project runs the more stable, mature and
diverse in character are sub-projects carried out by students.
It seems that the large application like USOS brings out new
ideas which may be worked on by students on various plat-
forms, from different perspectives, using a plethora of tools
and methods.

The most important difference between usual academic
projects and USOS projects is enormous: the latter HAVE to
deliver a final product and the author HAS to take part in its
deployment. Students join teams, practice new software en-
gineering methodologies, validate various software develop-
ment techniques, play various roles in the project (program-
mers, sub-project leaders, system administrators etc.) They
have to work in a strict time regime, use software version man-
agement systems, adopt standards, prepare and issue software
distribution packages, use bug-tracking systems, feel respon-
sibility for the final product, use flexible solutions (the pro-
duced code will be maintained and reworked by somebody
else). Students work in teams and always have a tutor — they
may discuss emerging problems either with the tutor or with
the team members. They deliver presentations and have to de-
fend their solutions. On the other hand they also learn how to
talk with clients, who are not IT experts. Last but not least —
they use the system themselves, being members of academic
community.

We teach by example and practice. If a student cannot un-
derstand what “user-friendly interface” really means we can
make him sit for a day at the help-desk for administration of-
ficers! Or make him responsible for training end-users how to
use Oracle forms! Next time he will really make the best ef-
fort to design a simple, self-explained and intuitive interface.
If he does not believe in the importance of thorough testing he
can be made responsible for gathering bug reports from angry
clients.

The code is often refactored when old solutions are replaced
with new better ideas. Some of the students fail (even if they
produce software, it is not attached to the official version of
USOS), majority succeed — all learn “programming in the
large”, absorb “good practices” of software engineering and
working culture. It is the best way to educate future leaders of
software teams and improve their management skills.

Software companies producing commodity software rarely
can afford experimenting with various techniques, methodolo-
gies and tools in the same project. We can — USOS becomes
a testbed for such experiments. For example the project man-
ager can waste “human resources” to test how web modules
would behave with various open source databases. Software
companies in stress of a hitting deadline may compromise
quality or standards of the application — students can not,
their Master degree may depend on adhering to the standing
rules.

Let us summarize major advantages of the project (e.g. [9]):

1. students take part in all stages of a real software develop-
ment process, including software deployment and main-
tenance;

2. students learn how to be team members, how to collab-
orate with colleagues from various groups, study pro-
grams, and even faculties;

3. students learn how to use professional tools, meet quality
and performance requirements, apply standards, feel re-
sponsibility for the product, confidentiality and integrity
of the handled data;

4. students get involved in the project even not participating
in it personally (every student of the faculty is aware that
software is developed in-house by the faculty members
and computer science students). They offer advice con-
cerning interface and functionality of the system, take
part in testing;

5. last but not least the academic community obtains the
high quality software.

There is also another aspect of students’ involvement in the de-
velopment of USOS. They obtain valuable experience which
should help them to start their professional careers. Some of
them may even by hired at universities deploying USOS.

Last but not least we want to point out the possible problem
of the whole enterprise: projects like USOS demand much
higher involvement of the academic staff, often exceeding the
ordinary academic obligations. On the other hand, however,
they may drive research in the area of software engineering



giving the possibility of experimenting with various methods
and techniques in a controlled environment.

No formal methods have yet been applied in the project.

4 Summary

Tempus project ended in December 2001. In 2002 UCI (Uni-
versity Center for Informatization) consortium of Polish high
education institutions, similar to Swedish LADOK [5], was
established with the purpose to support further development
of USOS and its gradual deployment at the participating insti-
tutions,

After creation of UCI the organizational structure of the
project changed. UCI hired a Working Team which is respon-
sible for carrying the project, appoints a project leader, sets
task and priorities for the team. The USOS Working Team has
been located at the Faculty of Mathematics, Computer Science
and Mechanics of Warsaw University. The main task of the
group is to deliver help-desk, support software deployment,
gather bug reports, debug and maintain software, prepare doc-
umentation, issue distributions and collect new requirements.
The cost of these tasks is covered from the fees of the mem-
ber institutions based on the project budget. Fees are low and
devoted for basic system maintenance.

The mainstream design and programming is still done by stu-
dent groups. Projects run by students are approved by the
team, which is also responsible for integrating the projects’ re-
sults with the system. Sometimes in one sub-project work to-
gether hired-programmers and student-programmers (“hired-
programmer” may also mean a student hired to develop a par-
ticular piece of software). There is always a clear distinction
between those two ways of involvement. For some students
that may even be an extra motivation — they may get an op-
portunity to earn money if they prove their value first.

The profile of the student projects changes, they are more di-
verse, more software engineering oriented. The number of
USOS Master and Bachelor Theses grows steadily — there
have been 15 by now, many more are on the way. USOS
provides a unique opportunity to integrate education in soft-
ware engineering with production of commodity software, to
involve students in a real project, teaching them software engi-
neering methods and tools along the way. We are determined
to continue that model of software development.

In April 2003 USOS is used on daily basis at five universi-
ties (at pilot faculties), a few others are at various stages of
deployment. At Warsaw University we started academic year
2002/03 with USOS at four faculties. The next year some
pilot modules (students’ scholarships, registration for foreign
languages courses) will be used at all faculties.

References
[1] K. Beck, Extreme Programming Explained: Embrace

Change, Addison-Wesley, 2000.

[2] M. Fowler, K. Scott,UML Distilled: A Brief Guide to
the Standard Object Modeling Language, second edition,

Addison-Wesley, 2002.

[3] S. Gylseth, Using CDM Fast Track, Oracle’s DSDM
Compliant RAD Approach, Oracle Corporation, 2000.

[4] Home page of Bureau for Academic Recogni-
tion and International Exchange, Warsaw, Poland,
http://www.buwiwm.edu.pl .

[5] Home page of LADOK consortium, Umea, Sweden,
http://www.ladok.umu.se .

[6] Home page of USOS, Warsaw, Poland,
http://usos.mimuw.edu.pl .

[7] Home page of USOSweb, Warsaw, Poland,
http://usosweb.mimuw.edu.pl .

[8] P. Klint, J.R. Nawrocki, editor.Proc. Software Engineer-
ing Education Symposium SEES’98, Scientific Publishers
OWN, Poznan, 1998.

[9] J. Mincer-Daszkiewicz,Developing Commodity Software
in Academic Environment(in Polish), III Krajowa Kon-
ferencja Inzynierii Oprogramowania — KKIO’2001, Ot-
wock, 2001, pp. 225–236.

[10] J. Mincer-Daszkiewicz,Student Management Informa-
tion System for Polish Universities, Eunis’2002, The 8th
Int. Conference of European University Information Sys-
tems, Porto, Portugal, June 19-22, 2002, pp. 271–281.

[11] J. Mincer-Daszkiewicz, Developing and Deploying
Commodity Software in Academic Environment(in Pol-
ish), KKIO’2002, IV Krajowa Konferencja Inzynierii
Oprogramowania, Poznan, Poland, October 15-18, 2002,
pp. 299–314.

[12] J. Mincer-Daszkiewicz,USOS — Student Manage-
ment Information System For Polish Universities, SA-
IAC’2002, Joint Int. Conference on State of the Art in Ad-
ministrative Computing, Tartu, Estonia, November 18–
20, 2002.

[13] I. Sommerville,Software Engineering, 6th ed., Addison-
Wesley, 2000.


