
Student Management Information System for Polish Universities

Janina Mincer-Daszkiewicz

Faculty of Mathematics, Informatics, and Mechanics,
Warsaw University, Poland

jmd@mimuw.edu.pl

Abstract

The purpose of this paper is to report the results of the New Ed-
ucational Tools Tempus JEP project (JEP-14461-1999), which
started November 1999, ended December 2001, involved all 17
Polish universities, and — in our opinion — was a great suc-
cess. The project objective was to design and introduce an in-
tegrated Student Management Information System (SMIS) for
academic structures and student affairs at Polish universities.
In two years we managed to gather information on study pro-
grams and administration procedures in use at the participating
universities, to produce fully functional software, and deploy
it on some of the faculties (others are now in various stages of
this process).

What makes this success more significant is that the software
was produced in-house, by the Faculty of Mathematics, Infor-
matics, and Mechanics, Warsaw University, by students super-
vised by academic teachers and Ph.D. students. Software was
designed and developed on software engineering and database
courses, and on master seminars. This can be considered a very
successful experiment in the didactics of software engineering
at the academic level.

Polish universities are now in process of creating consortium
(similar to Swedish LADOK [4]) responsible for further de-
velopment and future support of the system (as well as other
common activities of the participants).

Keywords: Student Management Information System
(SMIS); UniversitySOS(USOS); Software engineering in ed-
ucation

1 Introduction

The Tempus JEP project called New Educational Tools started
November 1999 and ended December 2001. The greatest
strength of the project was the active participation of 17 Pol-
ish universities1, highly determined to undertake an initiative
to unify university administration procedures and develop com-
mon software.

EC partners from Swedish LADOK consortium and universi-
ties from Belgium, Germany, Portugal, and United Kingdom
also participated in the project and offered their advice and ex-
pertise to Polish partners.

The main project objective was to design and introduce an in-

1In Poland there are 17 state higher education institutions calleduniversi-
ties. All of them participated in the project. Detailed information on the Polish
system of higher education is available in [3].

tegrated Student Management Information System (SMIS) for
academic structures and student affairs at Polish universities. In
1999 only some Polish universities had computerised databases
for that purpose, mainly in Desktop database technology (Clip-
per, Access or Foxpro), functioning at the faculty level. The
greatest challenge of the project was to conduct requirements
engineering at the participating universities and come up with
the software package which would be accepted by all partners,
used at the university level, and possibly approved by the Min-
istry of Higher Education as standard.

One of the very first conclusions was that none of the soft-
ware packages currently in use can be easily modified to fulfill
the needs of all participants. It also quickly became clear that
no Polish software company is able to provide the application
software needed for the national level university-wide database
with functionality requested for SMIS, mostly due to the lim-
ited budget of the project, but also because of the lack of exper-
tise on study programs and procedures involved in university
management.

The help came from the authorities of the Faculty of Mathe-
matics, Informatics, and Mechanics (MIM) at Warsaw Univer-
sity (UW), who decided that the needed software would be de-
signed and developed in-house, by the teachers and students of
the Faculty. By engaging students as programmers the problem
of the low budget could be solved. And of course no software
company could compete on the ground of expertise in academic
procedures with the team of teachers, students, and authorities
settled in university environment.

The development team was lead and supervised by the vice-
dean of the Faculty. Academic teachers designed, co-ordinated
and supervised students’ job, students worked as programmers
and leaders of sub-projects. Software was designed and de-
veloped on software engineering and database courses, and on
master seminars. This can be considered a very successful ex-
periment in the didactics of software engineering at the aca-
demic level.

At the end of the Tempus project (December 2001) the pro-
duction version of SMIS, called USOS (the term comes from
“Uniwersytecki System Obslugi Studiow” — in English: “Uni-
versity Study-Oriented System” — or, according to some uni-
versity officials, “University SOS”) was in use at the Faculty
of MIM UW, and few other faculties from four different uni-
versities. In Warsaw the USOS package had been used since
the beginning of the academic year 2000/2001. In particular at
the end of the academic year students from the 2000 admission
had been evaluated by built-in automatic procedures (only for
those students the data kept in USOS is complete). It is the best



evidence that the developed software is fully functional.

In January 2002 we started deployment of USOS at three other
faculties of Warsaw University. We hope to start the academic
year 2002/03 with USOS being fully operational as university-
wide software.

2 USOS — Requirements Analysis

The requirements analysis was an especially important stage
of the software development process. In Poland faculties of
the same university may differ substantially in the study pro-
grams, examination procedures, financial rules, and academic
activities. The problem is even more significant when differ-
ent universities are considered. Some follow more traditional
approach in which programs do not support interdisciplinary
studies and give little flexibility, as the large majority of courses
are compulsory. Other encourage student-driven education and
allow students to select individual courses to form their pro-
files. Only few universities use ECTS to monitor students’
progress, although most of them mention credit points in study
guides.

The software designers started with the thorough analysis of
university study guides. A special Internet application was im-
plemented for delivering requirements through forms accessi-
ble by web browsers. We advertised this application during one
of the workshops and encouraged contact persons from other
universities to fill it with the detailed requirements which could
not be identified otherwise.

The news group was formed with the purpose to create the fo-
rum for discussion and exchange of ideas. Also the project
web page ([5]) was posted on the net to suport easy access to
information.

It has been decided that USOS should support management
of student affairs (with exclusion of payroll and human re-
sources), in particular handling of the following data and ac-
tivities:

• students’ and teachers’ personal data,

• study programs and requirements of degree certificates,
along with the ECTS standards,

• course catalog (complete list with details; some of them
are persistent, like syllabus, prerequisites, credit points,
others depend on course edition, like course instructors or
weekly class schedule),

• course registration,

• class schedules,

• dormitories,

• tuition and financial aid,

• issuing documents, gathering statistics, producing reports,
etc.

Many non-functional requrements had been recognized. The
system should be:

• university-wide: there should be one global database for
storing data concerning all organizational units of the uni-
versity;

• flexible: the software should be configurable, which
means adaptability to programs and procedures of all par-
ticipating universities. It should not only deal with stan-
dard administration procedures but also allow for non-
standard solutions;

• open: the system should be easily adaptable to (possibly
frequent) changes in study programs;

• secure: the multilevel hierarchical system of priviledges
should be supported;

• compatible with ECTS standards;

• user-friendly: services offered to various groups of users
should be coherent and available through an easy and in-
tuitive interface (this is especially important for users who
are not professionals in Information Technology).

It had also been recognized that various access methods should
be supported for various groups of users, e.g.:

• administration officers and university authorities need re-
liable and secure access to highly confidential data,

• students and teachers need easy, but personalized and au-
thorized access to personal data, e.g. students want to
check their grades and progress within the study, browse
course catalog and register for courses, whereas academic
teachers should be allowed to browse or modify course
descriptions and fill up examination sheets;

• the public (e.g. prospects) need an easy and unlimited ac-
cess to information on university program offer.

3 USOS — Software Design and Implementa-
tion

The main goals of the project seemed almost contradictory.
On the one hand the software should support university-wide
repositorium of data with easy access for students, faculty and
administration officers, whereas on the other it should ensure
security of data and lower administrative expenses. The aver-
age faculty at Warsaw University has about 200–300 academic
teachers and 1500–3000 students, and there are about 18 fac-
ulties and 25 other organizational units. The solution with one
central database accessible for all kinds of users would mean
high licensing costs, possibly poor performance at rush hours,
and endangered privacy of data.

To meet the stated goals we designed the following architecture
for USOS:



1. the main database is implemented in Oracle technology; it
is accessed only by administration staff via Oracle forms
and reports. Oracle technology ensures effective han-
dling of huge amounts of data accessed simultaneously
from distributed client sites. The EU funding allowed for
the purchase of some number of Oracle licences to start
the project: for software designers and developers (Ora-
cle Designer, Oracle Forms, Oracle Reports), and for end
clients;

2. there are also a few Internet databases with massive num-
bers of clients accessing them via web browsers; this part
of software is made in open-source technology. Internet
databases are partial copies of the main Oracle database.
In particular highly confidential personal data are not
stored on the web, data are available mostly for reading,
and modifiable data comprise only a small subset. All data
transfers are encrypted. The Internet part of USOS (called
USOSweb [6]) can be integrated with departamental por-
tals, making the whole service coherent and easy to use.

Such architecture allows to avoid high cost of licensing which
would arose from permitting massive access to the central
database, It also increases scalability of the solution (e.g. we
may install one web database per faculty) and the security (con-
fidential data are only available to limited number of users and
are not endangered by web access).

On the other hand this architecture is more complex from the
technological point of view since databases have to be synchro-
nized by special algorithms and mechanisms (cf. Sect. 4).

The project was developed in accordance with the CDM Fast
Track methodology ([2]), designed by Oracle, which is a stan-
dard for enterprises conducted in RAD technology. We also
applied some practices of Extreme Programming ([1]). The im-
portant techniques described in the paragraphs to follow were
used in the project.

For each task in the project itspriority had been determined
andstrict time limits were specified for conducting this task.
This was particularly important due to the needs of the end-
users expecting deliverables on time, and due to psychological
aspect of keeping active involvement of participants and devel-
opers.

Workshops were very effective technique for information
gathering and decision making. Their particular importance
implied from the scale of the project involving universities
spread all over Poland. We organized workshops at least every
few months to keep universities informed about the progress
made and to involve them in decision making about the possi-
ble direction of software development.

Prototyping was used from a very early stage in the project.
The character of the project allowed us to deliver prototypes
quickly, soon after having agreed on the first functional re-
quirements. Prototypes were delivered to end-users and helped
in getting quick feedback on functionality and usability of the

product. Early prototypes offered limited possibilities for au-
tomatization of various procedures for groups of students (stu-
dents could only be handled individually), supported only few
most important reporting facilities and almost non global statis-
tics. Nevertheless they were used by administration officers
who could comment on interface, test correctness of imple-
mented routines, or point out missing options. The close con-
tacts between designers, programmers, and customers were one
of the most valuable aspects of developing software in-house.

Iterative development was driven by feedback from end-
users. They worked with prototypes and came up with ideas for
modifications. Requirements were not fixed at the start point of
the project, but were developed along the way.

Since various tasks of the project were conducted by various
groups of students we separated those tasks on the basis of the
size of the group and time deadlines for the expected function-
ality. Partitioning of the overall project into smaller tasks was
an important activity, driven by deliverables expected at each
milestone.

The project was lead by the vice-dean of the faculty, who had
theauthority to state goals, prioritize requirements, make de-
cisions and enforce their implementation. Being an academic
teacher in computer science she could also take personal re-
sponsibility for didactic aspect of the project.

From the very beginning we were aware that the final success of
the project depends heavily on our ability to offer the function-
ing software at the end of the Tempus project. Tempus helped
to get all universities involved in a common task. However,
such involvement usually does not last long. From the psycho-
logical point of view it was critical to deliver the useful product
before the obligation and the will to work together ends.

The RAD approach helped to achieve this goal. The contact
persons from participating universities played an active role
in communicating and exploring requirements throughout the
project, and participated in decision making. Prototypes deliv-
ered for use and testing helped to deploy the software at some
faculties before the end of the Tempus project.

4 USOS — Some Implementation Details

In this Section we describe some implementation details of
USOS, which might be interesting for wider audience.

4.1 Databases Synchroniser

As it has already been explained, to limit costs of Oracle li-
censes and ensure security, we decided to separate the main
USOS Oracle database from the web and make it accessi-
ble only to authorised members of university administration.
Simultaneously, however, we keep some auxiliary databases
which can be accessed by students, faculty members, and gen-
eral public using web browers. In those web databases we keep
only subset of data stored in the main database and in case of
failure we can rebuild them quickly. However, since data may



also be entered through the web interface to web databases
(when students register to courses and academic teachers fill
examination sheets) we need some tools for database synchro-
nization.

In the prototype version of USOS we implemented very simple
way of transferring data by files. The needed data from the Or-
acle database was written into a script file in form of SQL insert
statements and then this script was run to fill in web databases.

Student registration and assessment data were transferred from
web to Oracle by a text file as raw data. This file then was read
into temporary tables at the Oracle site. Then the temporary ta-
bles were checked for consistency with original Oracle tables.
The synchronisation consisted in tranferring consistent data to
original tables and delivering inconsistent data to human oper-
ator for decision.

This procedure worked satisfactorily at the early stage of USOS
deployment. However it had some drawbacks:

• Oracle to web data migration always involved all data
needed at the website (even if only a small piece of data
had changed at the Oraclesite). Its amount grew very
quickly over time;

• every time the Oracle database structure had changed code
of the migration procedures had to be updated. It hap-
pened a few times that programmers changed database
structure but forgot to make necessary corrections in the
migration procedure. This solution does not comply with
the software engineering rules such as information hiding
or modularisation and makes software difficult to main-
tain.

Finally we designed and implemented much more flexible and
generic tool which adapts automatically to the changing struc-
ture of the Oracle database. This tool, called Synchroniser,
connects remotly to both databases, reinstalls chosen tables at
the website in case their structure had changed at the Oracle
site and then synchronizes tables contents. It uses auxiliary ta-
bles at the Oracle site to keep track of changes made since last
synchronisation. Only changed records are exchanged between
databases. Again, in case of conflict (changes have been made
simultaneously at both sites and they are not consistent), Syn-
chroniser stops automatic data transfers and asks the operator
for the decision.

4.2 Authorised access to subsets of data

USOS has been designed as university-wide application, in
particular data concerning all faculties are being stored in its
database. On the one hand it gives the opportunity to deliver
various global level statistics and reports. On the other hand
the new problems emerge of unauthorised access to data or ac-
cess to excessible amount of data. The solution to the latter
problem is discussed in the next section. Here we consider the
problem of authorisation.

Of course only authorised users can log into the Oracle
database and access data stored there. However, various users
may have various access priviledges, according to the roles they
play in the real life. Even at the faculty level we may recog-
nise various such roles, e.g. the role of a clerk responsible for
first grade students of Computer Science, who can select, in-
sert, delete, and update records concerning those students, or
the role of a faculty dean who can select records concerning
all faculty students (for example to generate global report). Of
course one of the possible solutions was to deliver separate in-
terface for each role. That would, however, mean the neces-
sity to maintain all those interfaces and to program it for each
new role which may come out in the future. We have chosen
more flexible but also more technically sophisticated solution.
Roles, meant as privileges to select, insert, delete, and/or up-
date rows and columns of database tables (determined by SQL
statements) can be freely defined in USOS and then assigned
to USOS users. So we may define a role of a ”faculty dean”,
a role of a ”clerk responsible for first grade Computer Science
students”, or a role of a ”a clerk responsible for financial aid for
students”. Every user can have a few roles assigned but only
one of them is active at a time. Only Roles Administrator can
define roles and assign them to other users, but every user can
by himself activate one of his roles.

The whole USOS interface is transparent to the system of roles.
A user cannot read data it is not authorised to by his role
(database select statement delivers empty set of records). When
a user tries to modify records he can select but not update, the
“insufficient priviledges” message is being displayed and the
operation is aborted. The interface (Oracle forms) had to be de-
signed and implemented in compliance with this requirement.
The solution is very flexible since no Oracle programming is
involved in defining a new role, and it can be done any time the
need arises.

4.3 Data filtering

The system of roles solves the problem of authorised access to
subsets of data, but does not solve the problem of having to
deal with excessible amount of data. For example, clerks at
the faculty of Mathematics are, most of the time, interested in
data concerning math students. They don’t want to see records
concerning students of biology or chemistry. On the other hand
they have to be allowed to read these records when needed (e.g.
when a biology student decides to study math). What is needed
is the flexible mechanism of filtering the data. By default a
clerk at our faculty wants to see only math students, but from
time to time he also wants to get access to other students as
well. In USOS we deliver such functionality by a system of
filters. A filter has its name and can be defined by some SQL
statement (e.g. a filter called ”math student” or ”biology stu-
dent”). Filters can be freely made available to users, and var-
ious sets of filters can be accessible on various Oracle forms.
On each such form one of the filters is defined as default. A
user can by himself define new filters, determine their avail-
ability on various forms and choose default filters. No Oracle



programming is involved in defining and configuring filters.

4.4 Checking degree requirements

The module for student assessment is one of the most sophisti-
cated parts of USOS. This is mostly due to the student-centric
character of modern universities. The software for handling
study programs at such universities should support flexible
study systems. In particular it should allow students to select
individual courses to form their profiles, as well as should en-
courage interdisciplinary studies.

This means that the software should allow not only to state de-
gree requirements for some predefined profiles but also for in-
dividual students and their dynamically built-in profiles. USOS
supports such flexible requirements definition while simulta-
neously delivering automatic procedures for checking whether
those requirements have been met. The set of degree require-
ments can be copied for individual students and modified ac-
cordingly. The requirements can be stated by pointing a fixed
set of courses or a given number of compulsory courses picked
up from some group. Those groups can also be freely redefined
according to changing criteria, e.g. we may state that to be pro-
moted from a second to third grade a student should take eight
courses from groupA, but not more than three from groupB.
We can also state requirements for so called conditional pro-
motion. All those requirements can be checked automatically
and a status of a student’s progress can be updated accordingly.
The automatic system decisions can be verified at each stage
and also updated by the operator (who is, of course, the ulti-
mate authority).

5 USOS — Software Deployment

At the end of the Tempus project USOS had been deployed
at pilot faculties of the participating universities. The process
of software development and deployment proceeded in the fol-
lowing steps:

• after a new functionality had been developed, the neces-
sary changes had been made to the copy of the main Or-
acle database and newly implemented Oracle forms had
been installed to be used by few testers and the project
leader;

• after this testing phase, the structure of the main faculty
Oracle database had been updated and the new forms had
been delivered to administration staff. They used the pro-
totyped version of software giving quick feedback on its
functionality and usability to software developers;

• only after the prototype had been in use at MIM UW for
some time, the new distribution package of USOS was
prepared and offered to other universities. They also de-
livered quick feedback.

In January 2002 we started to deploy USOS at other faculties
of Warsaw University. University-wide deployment involves

many important decisions, steps and activities:

• USOS is not the first and only database application used
at Warsaw University. There is another application (called
HMS) for managing payroll and human resources. This
application had been designed a few years ago and is still
supported by a software company which owns the source
code. It has not been our intention to build HMS func-
tionality into USOS. However, there are some data with
are stored in both databases (e.g. information on univer-
sity staff), and thus to maintain their consistency we had
to agree on using common database dictionaries. It was a
good opportunity to spend some extra time on these dic-
tionaries and come out with the better design, more suit-
able for future needs. In USOS there will be a special role
for a user authorised to define or change content of system
dictionaries.

• To keep data consistent we had to decide that it is entered
into one database and exported from it to the other. A spe-
cial data export procedure had to be designed and imple-
mented, to transfer data from HMS to USOS. Such data
transfer has to be performed for each new faculty deploy-
ing USOS, and will have to be done periodically in the
future for data updates.

• Some faculties have partial data concerning study pro-
grams and courses, gathered in various desktop databases
or spread sheets. On the one hand we want to transfer au-
tomatically as much data from those sources as possible,
but on the other we have to check carefully for data consis-
tency (it is very easy to enter inconsistent data into spread
sheets) and cross-check data shared by various faculties
(e.g. students majoring in two programs).

• At this stage new roles have to be defined and tested
for representatives of administration staff from different
faculties comprising various access rights to shared data
repository.

We do not rush at this stage since we consider it very important
to unify dictionaries, coding rules, and administration proce-
dures employed at various faculties at as early stage of soft-
ware deployment as possible. We hope to start the academic
year 2002/03 with USOS being fully functional as university-
wide software.

6 USOS — Education in Software Engineering

The main goal of software engineering courses offered at uni-
versities as part of Computer Science curriculum is to make
students practice “programming in the large” (cf. [9]). The
emerging problems are that programming in the large means
taking part in real life projects, aiming at the production of
commodity software. Students rarely have an opportunity to
participate in all stages of the software process: specification,
verification, design, implementation, testing, and maintenance.



They are not motivated to meet the requirements, work accord-
ing to time limits, bother for quality of the final product, take
part in its deployment and maintenance (cf. [7]). For example,
how to make them interested in designing for change and soft-
ware reuse if the developed products live no longer then until
being graded by the course instructor?

The Tempus project gave us, responsible for software engineer-
ing education at the Faculty of Mathematics, Informatics, and
Mechanics, a rare opportunity to integrate education with pro-
duction of commodity software, to involve students in a real
project, teaching them software engineering methods and tools
along the way.

This is not the first time students at university take part in pro-
ducing commodity software. What makes USOS project dif-
ferent from the others is the scale and multilevel integration of
design, development and deployment activities with education.

After two years of experience we may summarize the advan-
tages and disadvantages of that idea (e.g. [8]). Among the ad-
vantages are:

1. students take part in all stages of a real software develop-
ment process, including software deployment and mainte-
nance;

2. students learn how to be team members, how to collabo-
rate with colleagues from various groups, study programs,
and even faculties;

3. students learn how to use professional tools, meet quality
and performance requirements, apply standards, feel re-
sponsibility for the product, confidentiality and integrity
of the handled data;

4. students get involved in the project even not participat-
ing in it personally (every student of the faculty is aware
that software is developed in-house by the faculty mem-
bers and computer science students). They offer advice
concerning interface and functionality of the system, take
part in testing;

5. last but not least the academic community obtaines the
high quality software.

The disadvantages are the following:

1. such project demands much higher involvement of the
academic staff, substantially exceeding the ordinary aca-
demic obligations;

2. the necessity of giving priority to academic goals may be
hard to reconsile with project goals, e.g. students are not
fully productive during summer breaks or exams.

7 Summary and Future Plans

We succeeded in getting the running software at the end of the
Tempus project. This, however, should be regarded as the very
first step in a long process.

Every participant of the Tempus project is entitled to get USOS
distribution package and a few Oracle licences financed by
Tempus. Polish universities have also understood advantage
of standardized information system. These are sufficient con-
ditions to start deployment.

USOS delivers main functionality needed for handling student
affairs and study programs. Many useful functions are still
missing and this is our task for the future. The professional
support and maintenance group has now to be formed and take
over the software from the development team. The main task
of this group will be to deliver help-desk, support software de-
ployment, gather bug reports, debug and maintain software,
prepare documentation, and collect new requirements.

Of course we need funding for that task. Further development
and support of the system should be one of the obligations of
the future consortium of Polish universities.

Students of the Faculty of Mathematics, Informatics, and Me-
chanics will be engaged in developing new modules. Currently
we work on modules for handling students dormitories, finan-
cial aid and scholarships, class schedules, diploma supplement
(a document established by the European Commission, Coun-
cil of Europe and UNESCO/CEPES in order to improve the
recognition of educational credential). Many faculties ask for
the module for tuition fee processing. The central university
administration needs access to global interdisciplinary statis-
tics. We also want to deliver more information through the
web, e.g. detailed information on degree requirements, individ-
ual requirements of student profiles, student progress, person-
alised class schedules. USOS should expend in the direction of
Virtual Students Office, offering integrated set of services.

In particular, one of the main goals for the near future is the
design and development of the web-based student admission
system. It would constitute the basis for the new admission
procedures, which will be introduced with the reform of sec-
ondary school graduation excepted in three years. This project
has been undertaken by a separate group of academic teachers
and students of the faculty. Our faculty was supporting comput-
erisation of the central admission procedure for Warsaw Uni-
versity for a few years so it was relatively easy to define system
requirements. The simple prototype is expected in a short time
and the fully functional version should be ready for admission
for the 2002/03 academic year. The guide of study programs of
all Warsaw University faculties will be available on-line, eas-
ily browsable. Printable version of the guide will be prepared
from the same source of data, delivered as XML documents.
A special agreement with one of banks have been worked out.
Prospects will transfer registration fees to bank accounts, and
information about these bank transfers will be send automat-
ically to the admission system. Basing on this information
the system will authorise applications delivered through web
forms. The admission software is designed to have a separate
database but its structure is consistent with the USOS database
thus it will be easy to transfer records of the accepted prospects
from one database to the other.



Last but not least, the academic society should not only be de-
livered a new more sophisticated software but also should be
instructed how to use it, how to find needed information, enter
data, print reports, etc. The reality is that members of this so-
ciety — students, academic teachers, and administration staff
— vary in their computer literacy and they need support and
encouragement to fully benefit from the new opportunities.

This is also a challange for the Faculty of Mathematics, Infor-
matics, and Mechanics, for the following reasons: we know
technology, we have experienced instructors, and we have lab-
oratories with computers which can be used for training. Two
years ago we started offering courses for academic teachers
from all university faculties on using Internet, searching for
information, filling up forms, preparing and delivering course
details. At the beginning of an academic year new students are
instructed how to browse course catalog, register for courses,
find teachers’ home pages (e.g. to check office hours), get in
touch with attendends of the same course, lookup grades and
progress within the studies.

The impact of the new university and nation-wide software
should be observed at the administration side as well as at the
academic side.

On the administration side it should improve management
practices, reduce cost of administration processes and promote
business rules, e.g. by giving access to various statistical data
which could support decision making by educational authori-
ties. New self-service mechanisms available remotly for stu-
dents and teachers should take care of some administrative
tasks, resulting in shorter waiting lines in front of student of-
fices and reduced paperwork.

On the academic side it should allow for introduction of flexible
study systems and flow of students between faculties, support
national and international mobility, provide coherent services
to students. Students can get some advice on determining their
profiles, since all necessary information is easily available at
their finger tips. Especially those who indent to study more
than one subject should benefit from this new approach.

References

[1] K. Beck, Extreme Programming Explained: Embrace
Change, Addison-Wesle, 2000.

[2] S. Gylseth,Using CDM Fast Track, Oracle’s DSDM Com-
pliant RAD Approach, Oracle Corporation, 2000.

[3] Home page of Bureau for Academic Recogni-
tion and International Exchange, Warsaw, Poland,
http://www.buwiwm.edu.pl .

[4] Home page of LADOK consortium, Umea, Sweden,
http://www.ladok.umu.se .

[5] Home page of USOS, Warsaw, Poland,
http://usos.mimuw.edu.pl .

[6] Home page of USOSweb, Warsaw, Poland,
http://usosweb.mimuw.edu.pl .

[7] P. Klint, J.R. Nawrocki, editor.Proc. Software Engineer-
ing Education Symposium SEES’98, Scientific Publishers
OWN, Poznan, 1998.

[8] J. Mincer-Daszkiewicz,Developing Commodity Software
in Academic Environment(in Polish), III Krajowa Kon-
ferencja Inzynierii Oprogramowania — KKIO’2001, Ot-
wock, 2001, pp. 225–236.

[9] I. Sommerville,Software Engineering, 6th ed., Addison-
Wesley, 2000.


