
WEB-SERVICES FOR EXCHANGE OF DATA ON
COOPERATION AND MOBILITY BETWEEN HIGHER

EDUCATION INSTITUTIONS

Fabio Arcella2, Janina Mincer-Daszkiewicz1, Simone Ravaioli2

1University of Warsaw, Banacha 2, Warszawa, 00-927 Poland
2KION, Via Cristoni 84, Casalecchio di Reno, RA 40033 Italy.

Keywords
Student and staff mobility, web-services, data exchange, student management information systems

1. EXECUTIVE SUMMARY
Student and staff mobility is one of the most important priorities of the European Higher Education
Area promoted by the Bologna process. According to the Mobility Barometer the most recent posted
statistics (for academic years 2005 and 2006) for Italy and Poland are quite substantial: the number
of students incoming to Poland in 2005 was 11 365, to Italy in 2006 was 48 771, the number of
students outgoing from Poland in 2006 was 31 132, from Italy in 2005 was 33 855.

Even these old numbers give some idea on the huge amount of letters, emails, faxes which had to be
sent to make it happen, not mentioning the time and cost involved. In the age of the Internet, web
services and digital signatures, European universities keep data concerning students and study
programs in an electronic form, yet exchange it on paper.

What is needed to change the way in which information is handled? Applications can transfer data
electronically through web-services architecture; however, they need common formats for data
concerning cooperation and mobility. There are on-going initiatives aiming to set European standards
for student digital data portability (see e.g. joint works by CEN/WSLT and RS3G) and although an
official European Norm has not been released so far, the specifications already produced might serve
as a starting point.

Authors of this paper come from two countries and represent two European Higher Education
consortia – MUCI in Poland and CINECA in Italy – which develop software for their domestic higher
education institutions. After meeting at Eunis 2008 MUCI and CINECA agreed to engage in a project
to develop a prototype infrastructure to send data about student mobility between the two systems.

The project started with setting format for data like HEI information record, Bilateral agreement
between two HEIs, Students nominated for mobility, Learning agreement and Transcript of records
of a student. Then WSDL file for web services was defined. The format was tested by preparation of
XML files with sample data from the University of Warsaw in Poland and Parma University in Italy.
WSDL was used to generate web-server and web-client for testing data transfer. Each part has to
implement middleware between the web-server and the local database. Various solutions are
possible, also in respect of how the exchanged data is being handled inside the local system. UDDI
registry was set up for keeping binding information.

The experiment is in a very early stage, but results look promising. Prototype implementation
already enables to send data between the two systems and to test transfer for any set of data stored
on the test web-server and web-client. Open questions have been recognized and possible solutions
are discussed. There is an issue of scalability and security if we think about data exchange between
all European HEIs. The problem of standard for data format should be solved by organizations like
CEN and RS3G but the RAD-like (or as some say quick and dirty) approach of this project may help in
setting some practical perspective. The idea is to call out for participation to other consortia and/or
student systems implementers to join this project, thereby achieving critical economies of scale,
which can result in a substantial impact toward the creation of the European Higher Education Area.

2. INTRODUCTION
Student and staff mobility is one of the most important priorities of the European Higher Education
Area promoted by the Bologna process. Let us have a look at some numbers. According to the
Mobility Barometer available on the web (http://www.letsgocampaign.net/) the statistics for Italy
and Poland, home countries of the authors of this paper, are as shown in the following table:

Incoming students Outgoing students

Year Number Year Number

Poland 2005 11 365 2006 31 132

Italy 2006 48 771 2005 33 855

Newer data are not yet officially available but may be expected to be much higher.

Data found in the information portal of the European Commission in Education & Training Section
(http://ec.europa.eu/education/programmes/llp/erasmus/stat_en.html) present long-term trend
for Erasmus programme which is the most important European project promoting mobility. The curve
showing student mobility during the period 1987/88 – 2006/07 grows almost linearly from 3 244 to
159 324.

Even this three-year old sample data gives us some idea on effort, time and cost involved in
management of mobility between higher education institutions in Europe. Unfortunately this effort is
perceived by traveling students and academic teachers as bureaucratic, and the huge amount of
letters, emails, faxes to be delivered and sent between involved parties is regarded as an obstacle
which makes good ideas cumbersome and tedious in implementation. No wonder that
recommendations for national and academic-level agencies, formulated in a summary of 2008 Study
on the Impact of Erasmus on European Higher Education: Quality, Openness and International-
isation (http://ec.europa.eu/education/erasmus/doc/publ/impact08.pdf) stress importance of
reducing administrative requirements and bureaucracy associated with the participation in
international programmes and in particular around mobility, supporting simpler, more efficient and
uniform procedures.

In our opinion this literally means less paperwork and more automatic handling of data exchange.
Proposals of bilateral agreements circulate on paper between partner institutions to be finally
signed and entered independently into both electronic systems. Students wanting to perform part of
studies abroad are asked to deliver – again on paper – their history of academic achievements,
courses passed, grades. Their personal data are obtained from the local student management
system, to be printed and sent by fax to the receiving institution, where they are retyped and
entered to the other database. Paper lists of nominated students circulate between partner
institutions before being finally approved. Learning agreements are prepared by students on paper,
approved and signed by coordinators from both involved institutions. Transcript of records (in fact
the same learning agreements but with grades attached) are printed, signed and sent back to the
home university of the student to be retyped there again to become a part of student’s history and
finally be printed on a diploma supplement.

In the age of the Internet, web services and digital signatures, European universities keep data
concerning students and study programs in an electronic form, yet exchange it on paper.

What is needed to change the way in which information is handled? Applications can transfer data
electronically through web-services architecture; however, they need common formats for data
concerning cooperation and mobility. There are on-going initiatives aiming to set European standards
for student digital data portability (see e.g. joint works by CEN/WSLT and RS3G) and although an
official European Norm has not been released so far, the specifications already produced might serve
as a starting point.

Authors of this paper come from two countries and represent two consortia – MUCI in Poland and
CINECA in Italy – which develop software for their domestic higher education institutions –

http://www.letsgocampaign.net/
http://ec.europa.eu/education/programmes/llp/erasmus/stat_en.html
http://ec.europa.eu/education/erasmus/doc/publ/impact08.pdf

University Study-Oriented System (USOS) in Poland [USOS] and ESSE3 in Italy. After meeting at Eunis
2008 where they participated in sessions on Bologna, standards and integration, MUCI and CINECA
agreed to engage in a project to develop a prototype infrastructure for sending data about student
mobility between the two systems.

In the chapters to follow we describe the most important steps and issues involved in building a
prototype distributed web-based system for electronic exchange of data on cooperation and mobility
between any higher education institutions.

3. PROCESSES INVOLVED IN INTERNATIONAL COOPERATION AND MOBILITY
The project started with recognizing sets of data being exchanged between cooperating partner
institutions. They imply directly from the main business areas of International Relations Offices,
which are agenda inside universities responsible for international programmes: cooperation and
agreement management (governmental, bilateral and multilateral agreements, educational
programmes), and mobility management (short-term arrivals and departures of students, academic
teachers, and other staff, for studies, internships, teaching, research) [JMD2008]. The mentioned
processes involve the following sets of data:

1. International cooperation.

Cooperation conditions of the agreements between partner institutions concerning short-
term studies are a source of important data which settle context for all mobility activities.
Sets of data comprise:

a. HEI description like names of both institutions, personal data of coordinators
(administrative and institutional), addresses, Erasmus codes etc.

b. Agreement data – description of both partner institutions and data on cooperation
conditions, like Socrates codes of disciplines, unit coordinators, number of places and
months for each study program level (bachelor, master, doctoral).

2. Mobility (incoming and outgoing).

a. List of students nominated for mobility. It comprises student personal data, period of
stay, exact arrival and departure dates.

b. Course catalog – details of courses are a basis for Learning Agreements and Transcripts
of Records. It comprises information like course code, course name, course description,
edition, total number of hours, lecturer, ECTS points.

c. Learning Agreement – the proposed programme of study for an outgoing student,
approved by coordinators from sending and receiving institutions. It is a list of courses
from the course catalog of the receiving institution a student intends to take during
his/her Erasmus study period.

d. Transcript of Records – it lists all the courses mentioned in the Learning Agreement with
details about obtained grades (usually given in a local scale and ECTS scale). Based on
the Transcript of Records the home university recognizes the results achieved by the
student at the receiving university.

These data are gathered in local databases of both institutions and handled electronically. Students
incoming for short-term studies should be treated like local students: get electronic student identity
card, register for courses, obtain grades which have to be registered in the system, get printed
version of a transcript of records. If the data are sent from one place to another on paper they have
to be manually entered into the system, running the risk of typing errors, which are common when
texts in foreign languages are handled.

Our purpose is to build tools for electronic transfer of data processed along mobility lifecycle to
avoid data reentry. The beneficiaries of such tools would be those institutions which have a local
student management information system, are active partners in international mobility programmes,
and want to automate the process of data exchange.

What is needed is a standard format for data like HEI information record, Bilateral agreement
between two HEIs, Students nominated for mobility, Learning agreement and Transcript of records
of a student.

4. ESTABLISHING FORMAT FOR DATA EXCHANGE

4.1. Standardisation committees and on-going projects
Standardization in data exchange is going to play a relevant role in this project, particularly in terms
of its potential of becoming an early-adopter of the work being carried out around the establishment
of a common format to describe data being exchanged between the various European Higher
Education stakeholders. In recent years, CEN (European Commission for Standardization) has been
putting more and more attention to supporting the creation of a European Higher Education Area,
through the activities of two main projects: Metadata for Learning Opportunities (MLO) and
European Learner Mobility (ELM).

MLO [MLO] is a standard addressing metadata sufficient for advertising a learning opportunity, a
programme of study for example. The goal of MLO is to provide information about a learning
opportunity, to enable the learner to make a decision if there is a need for more information about
the learning opportunity, and where to find that information. MLO is a lightweight standard that fits
well with existing business processes and technologies, and is designed in full compliance with ECTS
requirements. The MLO standard facilitates semantic technologies and web architectures to support
several mechanisms for exchange of information and aggregation of information by third party
service suppliers, while being easy to implement to ensure a rapid uptake by the European
countries. The MLO work stemmed from the need to harmonize different regimes around Europe
which describe and exchange information about courses, e-learning offerings, and learning
opportunities. MLO concept mapping is an effort to map how the existing specifications for metadata
about courses relate to the MLO model – if and how.

ELM [ELM] is a standard data model for the expression and exchange of European Learner Mobility
information, as defined by the European transparency instruments, starting with the Europass
portfolio (Diploma Supplement, Certificate Supplement, Curriculum Vitae, Mobility, Language
Passport) [EUROPASS]. This standard will support the interoperability of European-wide IT systems
that manage and exchange Europass related information. The standard will build on existing learning
technology specifications, such as MLO, and take into account related national application profiles.
As a multi-part standard project, the initial focus of ELM will be to create the specification to
describe the Diploma Supplement document – starting with an abstract model and all the way to
providing XML schemas, application profiles, and implementation guidelines.

The ongoing formal standardization efforts are based on two fundamentals principles: they build
upon previously developed specifications and leverage the experience of actual implementers and
vendors of student systems.

For example, the same team who worked on the XCRI (eXchange of Course-Related Information)
standard for Course Description (used as a base for MLO), has been working on defining the structure
for ‘achievement records documents’ (i.e. Diploma Supplement, a project called HEAR – Higher
Education Achievement Report [HEAR]), which is heavily referenced in the ELM project as well.

As mentioned, real implementers have also been involved in the development of the standard; this is
particularly critical in overcoming the so-called ‘adoption-dilemma’ whereby the official
standardization authorities end with producing specifications which do not reach the adoption
phase. In this respect, the working groups developing MLO and ELM do include representatives from
a specific implementation community, R3SG (Rome Student System and Standard Group [RS3G]) to
capture the real market perspective and obtain eventual buy-in from them. RS3G is a self-
established group of software implementers and stakeholders in the European Higher Education
domain which is focused on contributing to the definition and adoption of standards and procedures
for the exchange of data to facilitate student mobility and lifelong learning. KION is a founding
member of RS3G and MUCI has been always informed and indirectly involved in its activities – this
link between CEN, RS3G and the KION-MUCI project creates a very fertile ground for an early
adoption opportunity of new standard specifications for the exchange of student and course data;
this is a distinctive and promising feature of the presented endeavor.

4.2. WSDL and web-services for the MUCI-KION project
Web Service Definition Language (WSDL) is an XML format for describing network services as
collections of communication endpoints capable of exchanging messages. In our case these messages
transfer data on cooperation and mobility, as described in chapter 3.

A very important aspect of data exchange is a choice of unique identifiers for objects handled inside
the system. For some objects the choice is easy since they have natural unique identifiers. For
others some common agreement is needed since every institution probably has its own set of values
for identifiers. The most important objects to be identified are:

a. Higher Education Institutions – Erasmus code (like PL WARSZAW01 or I PARMA01)
seems to be a good choice, however it is limited to the institutions which have Erasmus
University Charter awarded be the European Commission. Institutions may want to use the
same electronic tools to support mobility with partners which do not belong to this group;

b. Countries – we have chosen ISO 3166-1-alpha-2, adopted also for Europass (see
http://europass.cedefop.europa.eu/xml/EUROPASS_ISOCountries_V1.1.xsd);

c. Languages – similarly the choice is ISO 639-1:2002, adopted also for Europass (see
http://europass.cedefop.europa.eu/xml/EUROPASS_ISOLanguages_V1.1.xsd);

d. Persons – we suggest to use person identifiers being in force in a country of citizenship.
Each country defines such type of unique code for its citizens, a pair (country code, person
id) would be a global unique identifier of a person in a system. Such identifiers could be
verified using a validation procedure delivered by each country involved in the project;

e. Courses – course code is a string which uniquely identifies a course inside the university
course catalog, a pair (HEI Erasmus code, course code) would identify a course globally in
the system;

f. Disciplines of study – Socrates code is a commonly accepted identifier for a discipline of
study, e.g. 11.3 corresponds to Computer Science, 15.1 to Journalism.

There are also other sets of data for which some commonly accepted dictionaries could be used, like
types of organization units inside HEI (faculties, departments, institutes etc.), types of study
activities for a course (lectures, laboratories, seminars etc.), grades (ECTS scale is easy to define,
but local scales may vary substantially and may be difficult to translate automatically to another
local scale or to ECTS scale).

The proposed set of web-services for the project comprises the following methods (arguments are
omitted, some involved data types are also described):

a. sendHeiData(), getHeiData() – official information on HEIs which sign the
cooperation agreement is a basis for further electronic handling of involved documentation
and activities. An agreement signed once is very often extended for next years. Keeping
track of partner university authorities and contact persons helps in daily communication
(e.g. in USOS an email may be send straight from the system if an email address is available
in the database);

b. sendAgreementData(), getAgreementData() – this information is vital for all
further mobility handling and tracking since it defines the most basic details of cooperation:
disciplines, number of places and months for each study program level (bachelor, master,
doctoral). These details are negotiated between partners and then settle a range for all
practical activities. In USOSweb, which is a web part of USOS for students and academic
staff, during recruitment for outgoing mobility students can browse agreements while
choosing a place to go for short-term studies. Erasmus coordinators can assign places to
students only up to the defined limits. The discipline code of the agreement should be
consistent which the discipline of study of the applying student;

c. sendNominatedStudents(), getNominatedStudents() – each institution should
send to the partner a list of students nominated for the mobility. Personal data of these
students should be entered to the other database since after arrival these students will be
treated like local ones. The current practice is that either data are retyped on the basis of a
paper documentation or students are asked to enter the data themselves. Both ways are

http://europass.cedefop.europa.eu/xml/EUROPASS_ISOCountries_V1.1.xsd
http://europass.cedefop.europa.eu/xml/EUROPASS_ISOLanguages_V1.1.xsd

often sources for many typing errors. In the University of Warsaw incoming students enter
their personal data into a special web form, from which data are transferred to the central
database. A system tries to uniquely identify a foreign student by first name, last name,
passport number (or any other document id entered through the form). However these are
textual data, any misspelling or difference in a way string is typed is the reason the
matching fails. As a result the person may get duplicated in the system since quite often a
student coming for a summer course later on returns as an Erasmus student or even – after
some time – as a lecturer. Such data duplication can cause many problems. A record of
personal data consists of the following fields: familyName, firstName, secondName,
birthDate, birthCity, gender, email, citizenNumber, countryCode,
permanentAddress, correspondenceAddress, stationaryTelephone,
mobileTelephone,

d. sendArrivalDate(), getArrivalDate(), sendDepartureDate(), getDeparture-
Date() – these dates are important since stipends paid to traveling students depend on the
exact dates of arrival and departure to/from a receiving institution;

e. getCourseData() – a course catalog is needed for two purposes. First, when delivered by
a partner and posted locally it may help students and Erasmus coordinators during
negotiations on Learning Agreements. Second, when Learning Agreement or Transcript of
Records is defined in the local system for each outgoing student, the course catalog may be
used to validate some data like course code, course name, lecturer, and ECTS points. Again
this may help to avoid possible typing errors. The main fields of the course record are the
following: courseCode, courseDescription (possibly in English, local language, course
language), name, language (in which the course is taught), URL, ectsPoints,
totalHours, period, lecturer;

f. sendLA(), getLA() – Learning Agreement is an official document required by the
Erasmus Agency. Having an approved LA is a necessary condition for any transfer of stipend
money to a student account. LA should definitely be kept in a local system for further
reference;

g. sendToR(), getToR() – Transcript of Record is the most important document for the
outgoing student. It is issued by the receiving institution and has to be delivered to home
institution where it will be entered to the local system to become a part of history of
student achievements. Eventually it will be printed on the diploma supplement. It lists all
the courses mentioned in the Learning Agreement with details about obtained grades
(usually given in a local scale and ECTS scale). In USOS a student after coming home from
the partial study abroad is obliged to enter information from the Transcript of Records to
the system through USOSweb and simultaneously deliver a paper version to the students
office. The officer from the students office has to validate the paper version against
electronic and finally approve the data in the system. This procedure would be much simpler
for both parties if data would be delivered electronically from the institution which issued
this document;

h. validateUID() – this is a helper function for validating a person country identifier to
ensure correctness of delivered data. Every electronic system needs a unique identifier of a
person to make sure that personal record is not duplicated.

In most cases two symmetric functions are available: send() for sending data to the partner and
get() for getting data from the partner. Depending on scenarios of cooperation either one or the
other may be more suitable in particular cases.

Coding is set to UTF-8. Current version of WSDL is available on the net at URL:

http://usosphp.mimuw.edu.pl:8080/ErasmusService/ErasmusService?wsdl.

We are aware that eventually WSDL definition will have to be updated after European standards
concerning formats of description of courses, personal data, and university data are officially
approved.

In the meantime cooperating partners may test how relevant is the suggested WSDL to their needs by
defining by hand sets of sample data to be transferred by the delivered tool. During the course of

http://usosphp.mimuw.edu.pl:8080/ErasmusService/ErasmusService?wsdl

the project we prepared two such sets of sample data – for the University of Warsaw and for Parma
University – and used them for testing before the new tool was integrated with the university
student management information system.

Depending on the final version of WSDL the problem of data mapping from common ‘mobility format’
to/from local format already in use may be less or more difficult to handle. Tests are needed before
any final conclusions can be drawn.

5. ARCHITECTURE
The general overview of the prototype architecture is shown on Fig. 1. The overall system is a multi-
node peer-to-peer network. The main elements are:

) – only one UDDI is needed in the system; • UDDI (see chapter 5.1

• Web server embedded in the application server (see chapter 5.2) – each institution
participating in the project should have its own web-server and WSDL, not all web-
services need to be implemented in each node;

• Web client embedded in the same application server (see chapters 5.3 and 5.4) – web-
client is needed generally for testing purposes and during initialization phase, it helped
us to test connections between system elements and data formats at various stages of
the project;

• Local student management information system with a module for International Relations
Office – in chapter 5.5 we describe a solution built for USOS (based upon an Oracle
database).

Figure 1 Architecture of the prototype

WSDL was used to generate raw versions of a web server and a web client. Their code does not
depend on local solutions and may be shared between universities. Each partner has to integrate
handling of web services into the interface of local SMIS and possibly also implement middleware
between the web server and the local database. Various solutions are possible at this part of the
system.

5.1. UDDI
Universal Description, Discovery and Integration (UDDI) is an XML-based service registry of
universities participating in the project. It is designed to be interrogated by Simple Object Access
Protocol (SOAP) messages and to provide access to WSDL documents describing the protocol bindings
and message formats required to interact with the web services listed in its directory. HEI Erasmus
code is an identifier which should be used to locate partner university on the net. The answer for
the inquiry contains an URL of the WSDL document describing the services implemented by the
partner (which might be a subset of the full version).

The UDDI server for the project was build using JUDDI-web-2.0rc5, which is an open source Java
implementation of the UDDI specification. We deployed it on the GlassFish application server for the
Java EE platform (GlassFish has been developed as an open source project led by Sun Microsystems).
The registry data is stored in the MySQL database. Communication is carried out via SOAP protocol,
in transport layer via HTTP protocol, by POST method (thus cannot be called directly from a web
browser).

5.3UDDI registry can be inquired and updated using web-client described in chapter . The web
browser interface to UDDI is demonstrated in fig. 2.

Figure 2 Web interface to UDDI

5.2. Web server
Web server accepts web service calls from the net and forwards them to the local system (possibly
through the middleware layer). In our prototype implementation we used Java platform for
embedding web server – it is the same GlassFish application server which has been used for the
UDDI. However each partner institution may use it own solution (e.g. KION installed Apache with
Tomcat and Axix). The only obligation is to implement a subset of web services described by the
commonly agreed WSDL document.

5.3. Web client
Web client was built to support the project during the testing phase. It allows for calling web
services from a web browser. The main parameters are URL of a web server and URL of a web client,
e.g. it may be used to simulate a call made by the University of Parma of a web service delivered by
the University of Warsaw web server. The interface is demonstrated on fig. 3 and 4. More details
about the web client are given in chapter 5.4.

Figure 3 Calling validate() for Polish citizen id from the web client interface

Figure 4 Calling sendHeiData() from the web client interface

5.4. TESTBED
We built a testbed to help us during the initial stages of the project. Its architecture is shown in
fig. 5. It comprises UDDI, web client, one web server at port 8080 (corresponding to PL WARSAW01)
embedded in one GlassFish application server, and another web server at port 9090 (corresponding
to I PARMA01) embedded in the second GlassFish application server. All this is installed in Warsaw.
The third web server was available in Bologna (hosted by KION) playing the role of Parma as I
PARMA02. Important elements of the testbed environment are also:

• Sample data stored in a file system which simulate data obtained from a database.

The sample set of files in XML format with data from both universities involved in the
project was stored on the client and on each tested server.

• Logs at the web servers.

Data being sent to the web server are always logged in a file system and may be viewed
using a web browser.

A web method invocation can be made either from the web client or (eventually) from a local SMIS.
When a send() method is called from the web client interface (see fig. 4), data to be sent are read
from a relevant set of files, can be updated through the web page and then are send to the server. A
get() method called from the web client interface displays the obtained data on a web page.

A called web service after reaching an appropriate web server can either be handled on the server or
(eventually) delegated to a local SMIS. When a send() invocation is handled by a server, the
obtained data is simply logged in the file system. When a get() invocation is handled, data are read
from a relevant set of files and send to the caller.

Eventually the local SMIS should suport method invocations made by local users and method
invocations made by remote users from partner institutions.

New institutions joining the project might in a similar way start with preparing XML files with sample
data, implement methods one by one and replace a test invocation by the invocation made
from/delegated to the local SMIS. Technically this is obtained by replacing one DAO implementation
(accessing the file system) with another (accessing the database in the local SMIS).

Figure 5 Testbed for the project

5.5. Integration into local SMIS
Interface for calling web services should be integrated into the local student management
information system. It depends on local solutions so the effect of scale may be achieved if national
consortia built software for their products. In case of USOS it was added to the module for
International Relations Office (described in [JMD2008]). USOS is built around an Oracle database.
From the database perspective two technologies were used for implementing data exchange
depending on the site which initiates the communication:

1. Web service called by the local user

• For send() – based on the context, data is selected from the database, an XML
message is formulated and enqued into Advanced Message Queue for outgoing messages,
the answer is read from Advanced Message Queue for incoming messages.

• For get() – an XML message is constructed and enqued into the Advanced Message
Queue for outgoing messages, the answer is read from another Advanced Message Queue
for incoming messages and displayed in Oracle form, where it can be viewed and deleted
(other actions, like transferring data from the queue to the local table, will be
implemented later).

2. Web service called by the remote user

• For send() – records which have been sent are stored in the XML buffer inside Oracle
database, special views are implemented for selecting messages corresponding to
specific web methods, they are displayed in Oracle forms, can be browsed, read, and
deleted (see fig. 6).

• For get() – request for data initiates a call of a procedure from an Oracle package,
which selects data from the database and sends to the caller.

Figure 6 Oracle form with data obtained from partner universities calling sendHeiData()

There are some open questions concerning the way the new functionality should be implemented.
Let us consider some real life scenarios. When a list of students nominated for a short-term studies
at one of the partner institutions is ready, an administrative officer from the IRO pushes the button
and sends it to the other site. After a day or two some corrections may have to be made. Should the
whole list be sent again or just an upgrade? Definitely a timestamp should be attached to each sent
record of data, so that the receiver can sort it chronologically. If the same list is needed from the
partner, should we rather wait for his send() to come or call get() ourselves? How to implement
such get()? A list of students nominated by the partner may not yet be ready when our get()
arrives. Web services are symmetric in a sense that the same set of functions can be called by either
of the partners but it seems that sends are more in line with real life data exchange.

Other problems arise when the data is obtained from the partner. It waits for our approval, can be
read from the buffer and viewed. But then we may want to store it in the local database. Some data
may depend on some other e.g. cooperation conditions may involve a particular unit from the
partner university, like Faculty of Chemistry or Institute of Social Sciences. This unit may already be
present in a local table or it may have to be inserted first, before other, dependent data can be
added. Can we uniquely recognize such unit in the database? How to avoid data duplication? If we
keep relations between tables (and most probably we do) the obtained record of data may have to
be divided into components and handle separately (e.g. it may happen that Faculty of Chemistry is
already available in the local table, however Institute of Social Sciences may have to be inserted).

Real life scenarios should be observed to find answers to such questions. Transfer of data to the
local database have not been implemented in the prototype system. More work is needed before
final solutions are delivered.

5.6. Deployment
There are some logistic problems concerning the deployment of the proposed solution on a large
scale, more challenging than pure technical issues. The following problems should be addressed:

1. Joining the project

International cooperation between two higher education institutions is always preceded by
signing the official agreement. This is also a good moment to discuss and settle conditions
for electronic data exchange. The designed distributed architecture operates on a peer-to-
peer basis so bilateral agreements between partners should be signed.

2. Authorization and authentication

Authorization and authentication might be supported by some Federated Identity
Management infrastructure similar to Eduroam. PKI can be regarded if higher level of
security becomes necessary, but in our opinion this is not an obligatory requirement.

3. Security

Secure encrypted transfer protocol should be used since in many countries personal data are
protected by law and their privacy can not be jeopardized.

6. CONCLUSIONS
There have been some earlier approaches concerning electronic exchange of data on student
academic achievements. In [STKA2007] authors describe a system for sending Transcripts of Records
which is based on e-government standards being in force in Germany. In [SITI2006] a distributed
system is described for sending Europass documents – it is going to be deployed with the support of
Cedefop. An attempt to integrate two software systems for data exchange on international
cooperation is also described in [VeRa2007]. Our approach differs in some respect since the main
goal is the support for processes running at IROs of cooperating higher education institutions, strictly
connected with the student and staff mobility. The solution is needed now and here, and – what is
very important – may be deployed now and here. Two partners who gather data in their local
systems and are willing to cooperate may start exchanging data electronically almost immediately,
others may join when they are ready. An effect of scale can be obtained relatively easily, if only
national consortia developing student management systems join the project and integrate needed
interface into their products. MUCI develops USOS which is deployed in 25 higher education

institutions in Poland which group about 30% of students in Poland (40% of state owned HEIs). USOS
contains a module for IRO with full support for electronic handling of processes of student and staff
mobility ([JMD2008]). KION owned by CINECA, which is the leading consortium of Italian Universities,
develops ESSE3 which is a student management system in place in over 75% of all Italian Higher
Education Institutions. There are other consortia in European countries which cover high percentage
of domestic universities like Ladok in Sweden (almost 100% of the market), HIS in Germany (230
universities), OCU in Spain, and also companies like unisolution which deliver software for many
institutions all over Europe (moveon is the standard software used by 260 institutions in 12 European
countries to manage their international activities). Let us imagine that these companies add support
for data exchange into their systems. Not so much implementation work, tremendous effect of scale
– it would be interesting to count how many students might travel across Europe not accompanied
by a flow of papers.

This will not happen without common data format, adopted and agreed on by all partners, compliant
with the official standards. This may be the most difficult step to make. The suggested approach is
not to wait passively for the final approval of the official standards (European Norm) but to actively
start with some preparatory steps and work on the practical implementation. Some parts like UDDI
or web servers are already available and may be obtained as an open-source. Others, like local
arrangements, have to be done by software vendors but – as it was said – the effect of scale may be
obtained rather quickly. RAD-like approach of our project may help in setting some practical
perspective. The idea is to call out for participation to other consortia and/or student systems
implementers to join this project, extending it and making it sounder with their requirements,
thereby achieving critical economies of scale which can result in a substantial impact toward the
creation of a European Higher Education Area.

Acknowledgements
Many thanks to Michał Kurzydłowski, Piotr Pietrzak, Artur Popławski, and Janek Rudziński who
implemented the Warsaw part of the prototype system; and Valentino Sarli on KION’s side.

7. REFERENCES
[ELM] European Learner Mobility,
http://wiki.teria.no/confluence/display/EuropeanLearnerMobility/European+Learner+Mobility

[EUROPASS] Europass, http://europass.cedefop.europa.eu

[HEAR] Information regarding HEAR (Higher Education Achievement Report),
http://wiki.cetis.ac.uk/Achievement_Information_Working_Group

[JMD2008] Mincer-Daszkiewicz, J. (2008). International Cooperation and Mobility in Higher Education
from IT Perspective, EUNIS’2007. Retrieved May 1, 2009, from: http://eunis.dk/papers/p21.pdf

[MLO] Metadata for Learning Opportunity, http://wiki.teria.no/confluence/display/CIF/Home

[RS3G] Home of Rome Student Systems and Standards Group,

http://wiki.teria.no/confluence/display/RS3G/Home+of+RS3G

[SITI2006] Siaperas A., Tissot P. (2006). A Distributed System for Issuing Europass Mobility
Documents. Retrieved May 1, 2009, from:
http://wiki.teria.no/confluence/download/attachments/13697206/Distributed+System+for+EUROPA
SS.doc?version=1

[STKA2007] Strack H., Karich Ch. (2007). A Distributed Architecture for the Management of Data
Flows within the Bologna Process Using Egovernment Standards. Retrieved May 1, 2009, from:
http://www.eunis.org/events/congresses/eunis2007/CD/pdf/papers/p205.pdf

[USOS] Home page of the University Study-Oriented System, http://usos.edu.pl

[VeRa2007] Velay S., Ravaioli S. (2007). Powering International Mobility – A Software Integration
Experience Across Europe, EUNIS’2007. Retrieved May 1, 2009, from:
http://www.eunis.org/events/congresses/eunis2007/CD/pdf/abstracts/p141.pdf

http://wiki.teria.no/confluence/display/EuropeanLearnerMobility/European+Learner+Mobility
http://europass.cedefop.europa.eu/
http://wiki.cetis.ac.uk/Achievement_Information_Working_Group
http://eunis.dk/papers/p21.pdf
http://wiki.teria.no/confluence/display/CIF/Home
http://wiki.teria.no/confluence/display/RS3G/Home+of+RS3G
http://wiki.teria.no/confluence/download/attachments/13697206/Distributed+System+for+EUROPASS.doc?version=1
http://wiki.teria.no/confluence/download/attachments/13697206/Distributed+System+for+EUROPASS.doc?version=1
http://www.eunis.org/events/congresses/eunis2007/CD/pdf/papers/p205.pdf
http://usos.edu.pl/
http://www.eunis.org/events/congresses/eunis2007/CD/pdf/abstracts/p141.pdf

	1. EXECUTIVE SUMMARY
	
	2. INTRODUCTION
	Incoming students
	Outgoing students
	Poland
	Italy

	3. PROCESSES INVOLVED IN INTERNATIONAL COOPERATION AND MOBILITY
	4. ESTABLISHING FORMAT FOR DATA EXCHANGE
	4.1. Standardisation committees and on-going projects
	4.2. WSDL and web-services for the MUCI-KION project

	Coding is set to UTF-8. Current version of WSDL is available on the net at URL:
	5. ARCHITECTURE
	5.1. UDDI
	5.2. Web server
	5.3. Web client
	5.4. TESTBED
	5.5. Integration into local SMIS
	5.6. Deployment

	6. CONCLUSIONS
	Acknowledgements
	7. REFERENCES

