
USOS API — how to open universities to Web 2.0
community by data sharing

Janina Mincer-Daszkiewicz, Faculty of Mathematics, Informatics, and Mechanics, University of
Warsaw, Banacha 2, 02-097 Warszawa, jmd@mimuw.edu.pl

Keywords
API, information sharing, interoperability, user-centered approach, OAuth, request token, JSON,

mobile app, social network, University Study-Oriented System

1. ABSTRACT

In recent years more and more higher education institutions in Poland have deployed computer
systems supporting various aspects of their activities. University Study-Oriented System (in short:
USOS [USOS]) is an integrated suite of applications, running on top of a central database, installed in
over 35 higher education institutions (HEIs) in Poland, altogether offering educational services to
almost ¼ of the population of students from public sector HEIs. Some of these HEIs, after almost 10-
years of using USOS, gathered in their databases a plethora of data, vital for their didactic duties,
but also of use in many other aspects of virtual lives of involved students, staff members, university
administration and authorities, who want/need access to gathered data not only by standard
interface of USOS applications but also in other context. For example students might want to get
information of obtained grades straight to mobile phones, staff members might want to share
courseware among a group of professionals gathered on Facebook, administrators of departmental
web portals might want to present statistical data on offered courses using drawing tools developed
by a third party software company. The problem is how to get access to the data which is owned by
university, stored in its databases, and only available through the interface provided by USOS
developers, who have to prioritize requests concerning software development coming from all

universities from MUCI [MUCI] consortium.

Companies like Google, Yahoo, Facebook, or Amazon, which gather data and deliver it to many
people all over the world, have already recognized the need of their users for sharing the data
across the systems. They offer API — an interface used by software components to communicate
with each other and exchange data [API]. University is also part of a virtual world, not an island.
University systems could integrate with the outside world and support flow of data. USOS developers
decided to give university authorities the possibility to open university repositories for public access
while still holding them under control, to become more user-oriented, like the aforementioned
companies. This possibility comes as USOS API — a standard interface to data gathered in USOS

databases, publicly available, well documented, with guaranteed backward compatibility.

In this paper we present USOS API, goals we are going to achieve, architecture of the solution,
security and privacy issues, design of API methods, sample applications. USOS API is available at

http://apps.usos.edu.pl/developers/api/.

2. GOALS

Why should USOS developers be interested in developing API to their systems? Why should university
authorities be willing to open access to university data? How to control privacy and security? The last
question is particularly important, we will address it in the next chapter. Questions concerning

reasonability of the idea are crucial for the project and will be dealt with first.

USOS is a suite of software applications built in a distributed architecture. There is a central Oracle
database with many packages, functions, triggers, jobs, etc. There is an interface for the university
administration built in Oracle Forms and Reports. Recently Oracle Reports are being replaced by
reports developed using BIRT — Java-based Business Intelligence Reporting Tools. There is a couple
of web-based applications, developed in PHP, Smarty, and Javascript, with local MySQL database,

mailto:jmd@mimuw.edu.pl
http://apps.usos.edu.pl/developers/api/

which is automatically synchronized with the central Oracle database. There is also a couple of web-
based applications developed in Django (framework based on Python), some of them as diploma
projects of students of computer science. Business logic which is not gathered in the database, is
duplicated and distributed among Oracle Forms, PHP and Django code. This software construction is
historically justified, however with the growing number of new modules, becomes more and more
difficult to maintain. We decided to identify parts of business logic, which might be gathered in one
place and delivered through USOS API. USOS API thus plays a role of an application server which
implements business logic and makes it available to other modules of the software system. Examples

will be given in the following chapters.

USOS API also helps to integrate applications from the USOS suite with commodity software already
available in university environment, like library system, e-learning, HR and financial systems, which
are delivered by independent suppliers. Some data is needed in all and must somehow be shared and

exchanged.

University is part of a virtual world, cannot neglect Web 2.0. Students and staff members want to
smoothly travel between their private and professional virtual environments, share opinions on
Facebook with participants of the same course, browse course catalogues by mobile phones, obtain
grades there or register to courses. There are many possible uses of USOS API methods by Facebook
plugins, mobile applications, or other tools supporting social networking.

Last but not least, USOS is owned by MUCI consortium, which is a non-profit organization. USOS is a
home-made product, developed by the team financed from fees paid by HEIs gathered in MUCI. Such
model of financing is very cost-effective, the estimated cost of development of a new software
module when calculated per university is very low. It would be difficult for a third party software
supplier to deliver a similar product of a comparable cost. However a particular university may be
interested in getting a product better suited to its needs, or just different, or with a specific
functionality. By publishing standard API giving access to the university data, on the one hand we
make it possible for other software companies to work on competitive products, and on the other
make the enterprise more economically reasonable, since the same products may also be offered to
other HEIs running USOS. Competitiveness is profitable for MUCI participants, as is usually the case
when there is a higher supply of good quality products on the market. In particular, students’ Master
and course projects are also easier to carry on and may lead to good quality products, when some

basic functionality around USOS data is already available through API.

 Figure 1 USOS API Home Page

USOS API is publicly available in internet, at http://apps.usos.edu.pl/developers/api/ (see Figure
1). It is well documented, written in English, what makes it available also for companies from
outside Poland. Backward compatibility is guaranteed. Project is in progress, new methods will be

published over time.

3. AUTHORIZATION

University databases store private data (like citizen identity numbers, names, birth dates etc.),
confidential data (like information about handicapped students or social aid), data of business value
(like mailing lists of students and staff members), data which is vulnerable for theft or destruction
(like grades or thesis reviews). USOS API should give university authorities the possibility to open the
data repositories for public access while still holding them under control, protecting against misuse,

violation of privacy, or destruction.

Basically, there are three ways to access USOS API:

 Anonymously: if an application chooses not to authenticate, it will be limited only to a
subset (but still fairly usable subset) of API methods. The main advantage of this solution is

its simplicity: just plain HTTP requests are passed.

 With an API Key: application will be able to ask users to share their data with it. Acquiring
an API Key is easy but good understanding of the Authorization procedure is necessary.

 With an Administrative API Key: it might — for example — allow an application to run any

method as any user. Such key is only granted to trusted applications.

Model of authorization followed in USOS API is based on OAuth protocol, version 1.0a [OAuth] (used
also by Facebook, Twitter, and Google applications). It is a standard method of secure API
authorization for web, desktop, and mobile applications.

There are three players taking part in the authorization procedure of the OAuth protocol:

 Application (in short App) — also called a Consumer,

 USOS API — also called a Provider,

 User — this is always one of USOS users who interacts with the application.

Here's what happens during the authorization procedure (see Figure 2):

1. App developer generates an API key for the application. This consists of two strings of
random characters called a Consumer Key and a Consumer Secret. Having the keys App can
(using OAuth client libraries) make a signed 2-legged API call. (This is called 2-legged,

because no User is yet involved.)

2. App can make 2-legged USOS API calls having the Consumer Key only, but usually it needs
more complex API methods, which require Users to share their data with it. Here's where the
3-legged authentication begins.

3. User connects to App’s site to share his data.

4. App makes a 2-legged services/oauth/request_token API call to acquire a Request Token
and Request Token Secret. App MUST provide an oauth_callback and MAY provide scopes

argument at this stage. These will affect the authorization flow below.

5. App generates USOSapps authorization URL and asks User to visit it.

6. User visits the authorization page. (If he's not logged in, USOS API will first ask him to log in.)

User will be asked to share his data.

7. User grants access to his private data. Now the Request Token becomes an Authorized

Request Token, which is bound to User who was logged in and authorized it.

a. If App has supplied a callback URL while generating authorization URL above, User's browser
is redirected to this URL. USOS API will append a PIN code (OAuth Verifier) to the URL GET

parameters, where the Consumer can read it.

b. If not, USOS API will display a PIN code to User. App will have to ask User to enter it
manually.

http://apps.usos.edu.pl/developers/api/
http://apps.usos.edu.pl/developers/
http://apps.usos.edu.pl/developers/api/services/oauth/#request_token

8. In either case, App has an Authorized Request Token (bound to a specific User) and a PIN

code. They will be used to acquire an Access Token.

9. App makes a 3-legged services/oauth/access_token API call signing it with the Consumer
Secret and Request Token Secret. In exchange App receives an Access Token and Access

Token Secret.

10. Now App uses Access Token (along with the Consumer Key) to call User-related API

methods.

 Figure 2 OAuth protocol

http://apps.usos.edu.pl/developers/api/services/oauth/#access_token

API keys are obtained/revoked from the USOSapps Administration Panel (see Figure 3).

OAuth tokens may expire. Request Tokens expire quickly, they are intended to be immediately
exchanged for Access Tokens. Access Tokens live longer, they expire after app. two hours OR after
user logs out. All Access Tokens become invalidated when User revokes access to his USOS account
from the application (using USOSapps Administration Panel).

When App requests a Request Token, it declares a scopes argument, which describes permissions
required for it to run. Each API method may require different scopes — they are described in the

specification.

When App asks User to authorize its Request Token, USOS API will notify User which scopes it

requires. It should be chosen wisely — users may discard App request if it wants too much!

These are examples of available scope keys:

 What can be obtained by default: permission to read basic user information (such as user's
name and id). App need not request this permission explicitly — it receives it by default with

each Access Token.

 email: provides access to user's email address.

 offline_access: enables App to perform authorized requests on behalf of User at any time. By
default, Access Tokens expire after a short time period to ensure that applications only
make requests on behalf of users when they are actively using the applications. This scope

makes Access Tokens long-lived.

 personal: provides access to user's personal data, such as citizen identity number, date of
birth, etc.

Figure 3 USOSapps Administration Panel

 photo: provides access to user's photo.

 studies: provides access to lists of study programs, courses, classes and groups which the

user attends (as a student).

There are some API services that allow access to data that is not available to ordinary users.
Therefore, there is no user that could authorize access to such data — the access scopes policy
described earlier does not apply.

In order for App to access such sensitive data, App developer needs to contact USOS API

administrators directly to acquire an Administrative Consumer Key (and Secret).

Administrative Consumer Key can be used like an ordinary one, but it grants an administrative access
to some of the methods. This means that App may execute standard user methods with a as_user_id
argument (instead of a valid Access Token), plus it might get access to methods that are not usually

available to ordinary developers.

4. API DESIGN

USOS API Reference is a complete set of documentation needed in order to use the API. Each API

method is designed according to some general rules and well documented on the web.

Entities stored in USOS database and handled by API methods are defined, and their relations are

illustrated on Entity-Relationship Diagrams, using Crow's Foot Notation.

All methods are divided into modules, like users, course, terms, geo, mailing, etc. Each method is

thoroughly documented, its arguments listed and commented.

Figure 4 illustrates a sample module (Timetables). Entities are explained, ERD diagrams shown,
methods listed. A detailed specification of each method follows down the page (a sample method

user from module users is shown in Figure 5).

Most of the methods come with an optional format argument. It defines in which format the results
should be passed. The recommended format is JSON (JavaScript Object Notation), but others are
also available (e.g. XML map). Most of the data is available in two languages — Polish and English.
All methods use LangDict objects to express data that comes in many languages. LangDict object is

very simple — it is a dictionary of two keys (pl and en) and their values.

Figure 4 Timetables module with methods and ERD diagrams

http://apps.usos.edu.pl/developers/api/contact/

Many methods return multiple objects, referenced (explicitly) by multiple keys. For example, when
App asks for course descriptions of 30 different courses and one of these courses does not exist, it
will get the HTTP 400 error. It is possible to ask for partial response, which will allow to retrieve 29

of 30 referenced courses.

 Figure 5 Method specification

Figure 5 specifies a simple method user from module users which returns personal data of a given
user (access token issuer, by default, or the one pointed to by the argument user_id). The returned
value is a dictionary of (key, value) pairs. Values returned depend on the scope and the passed key.

API methods follow REST (Representational State Transfer) protocol.

API documentation is automatically generated based on the output of apiref module, which is part
USOS API itself.

5. EXAMPLES OF USING USOS API

Some simple applications which use USOS API have been prepared and posted on the project site to
demonstrate to prospective developers how to incorporate authorization and methods invocations

into the code.

There is Hello World written in PHP, Simple Proxy in PHP, Today’s schedule in Python, and the
most useful, USOS API Browser written in C#. The last one (see Figure 6) is Windows desktop
application which allows to browse USOS API methods (thanks to the apiref module) and execute
them with the supplied arguments. This is a very convenient tool for getting acquainted with USOS

API itself.

Some of USOS API methods are already used in the production software. USOSweb which is the main
web application of the USOS suite, used daily by students and academic teachers, invokes methods
from the Timetable module to draw all schedules, for students, teachers, courses, groups of courses,
didactic rooms, etc. Information about public holidays, when there are no classes, is also available
from the same source. Information about ECTS points accumulated by a student is obtained by a
method which calls a procedure from an Oracle package. Some web applications (USOSweb,
Electronic Archive of Diplomas, Survey Tool, USOS-Mailer) use methods from the mailing module to
send emails to individual users and groups of users (recognized by USOS). Mails may be sent with

Figure 6 USOS API Browser

attachments, which are files stored in a dropbox, which is also handled by USOS API. Simple search
engines of students, teachers, courses etc. are also used. There are some projects under
development, like mobile applications (one for iPhone and one for Android) and SocialUSOS
(Facebook plugin) which require information about groups of students attending the same courses,
grades obtained by students, notifications sent by USOS. Some applications use photo module to

obtained photos stored in USOS database.

Some software companies already enquired about the possibility of offering services which would
need access to data stored in USOS database.

6. CONCLUSIONS

USOS API is a very young project. We are still experimenting with various solutions. For example
there is an issue of granularity of methods and expectations concerning data freshness. Compare a
method which delivers a single photo, with another which is responsible for registering a student to
a course, according to some predefined policy. The first one is very simple, implemented as a single
SQL statement — data may be sent straight from the central Oracle database, because we should not
expect many invocations of the method (photos do not change so often and will most probably be
cached on the application side). The other is much more complex, may require a sophisticated
algorithm run in a transactional mode, since results are needed in real time and data consistency has
to be maintained (e.g. number of students who have successfully registered should not exceed the
predefined limits). If registration is conducted on a first come first served basis, there is also a
problem of scalability on the one hand and system responsiveness on the other. Registering students
should not disturb daily work of staff from students offices, so it might be reasonable to run such
OLTP-like requests, needing access to the latest versions of the data, on local MySQL database of

USOS API, but then keeping data consistency between Oracle and MySQL becomes a challenge.

Users are very much interested in being notified by USOS about various events (new grades, changes
in schedules etc.), however such notifications should be kept under control — too many might

degrade system operation.

We have not yet run stress tests of the most demanding methods, this is one of the tasks for the near

future.

The new methods will be added to USOS API as needs arise. New modules and subsystems of USOS
will be based on functionality of USOS API, old modules may be rewritten in new architecture in the
future. One of the projects planned for the near future is to rewrite the interface between USOS and
Moodle, which is an open source Course Management System, very popular in Poland, used to
support e-learning [Moodle]. Many data have to be exchange between student management system
and e-learning platform, for example lists of registered students are sent from USOS (which is
responsible for registrations) to Moodle, whereas grades are sent in the opposite direction. Now
data are synchronized on the database level, which means that both systems are much more

vulnerable to changes made in the other.

It should be stressed again that the privacy and security of data is crucial for the project, since data
is made available to untrusted and partially trusted third parties. It is ensured by OAuth protocol and
application keys of various levels. Unlimited access to data is only granted to applications with the
Administrative API Key, most probably developed by the USOS team. Other applications need
permission of the user, who gives access to his data in USOS to another application (like mobile app

or Facebook plugin). Before user grants access he is first authorized with his USOS account.

There are two options for releasing API: protecting it from the general public or making it freely
available. We decided to open USOS API to the public. Such API allows web communities to create an
open architecture for sharing content between communities and other applications. Content that is
created in one place (e.g. student management information system like USOS) can be dynamically
posted and processed in multiple locations on the web by many different service providers. User is in
the center of such design. This model also encourages contributions of code from students, freelance
programmers, as well as professional software companies.

For USOS developers API is mainly a tool for improving software engineering aspects of the project,
like Rapid Application Development, easier code maintenance, code standardization and unification
of the offered functionality. For universities it may become part of PR strategy, building an image of

the educational institution, which is user-centered and open to new trends in social networking and

Web 2.0. Both motivations are profitable.

Acknowledgements

The idea of USOS API came from Wojtek Rygielski who also designed and implemented the first

version. Many thanks.

7. REFERENCES

[API] Application Programming Interface in Wikipedia, with many links to available APIs. Retrieved in

January 2012 from: http://en.wikipedia.org/wiki/API

[Moodle] Home page of the Moodle community, http://moodle.org/

[MUCI] Home page of the MUCI consortium, http://muci.edu.pl

[OAuth] OAuth Community Site, http://oauth.net/

[USOS] Home page of the University Study-Oriented System, http://usos.edu.pl

[USOSAPI] USOS API, http://apps.usos.edu.pl/developers/api/

http://en.wikipedia.org/wiki/API
http://moodle.org/
http://muci.edu.pl/
http://oauth.net/
http://usos.edu.pl/
http://apps.usos.edu.pl/developers/api/

