
We Publish, You Subscribe

Hubbub as a Natural Habitat

for Students and Academic

Teachers

Janina Mincer-Daszkiewicz

University of Warsaw

jmd@mimuw.edu.pl

Umea, 2014-06-11

mailto:jmd@mimuw.edu.pl

2

Agenda

Mobile applications based on PUSH

(instead of PULL) paradigm

 PubSubHubbub protocol

 Real time notifications

OAuth protocol

USOS API

USOS stands for University Study-Oriented System

(used by over 40 HEIs in Poland)

3

Stating the problem

 Members of academic community, students and academic

teachers, want to use smart phones and mobile Internet to access

data stored in academic databases.

 Providers of student management information systems (SMIS) for

higher education offer mobile applications to fulfill these needs.

 There is no question of whether to allow such access, the question

and challenge is how to deliver information in real time

(instantly), in a user friendly manner, without exposing university

servers to crashes in peak hours.

 There is also a problem of data confidentiality. Nobody wants to

jeopardize personal data, photos, grades, registrations, diplomas

etc. stored in an academic information system.

4

http://www.sonlight.com/blog/2011/10/not-negative-the-positives-of-homeschooling.html

http://www.sonlight.com/blog/2011/10/not-negative-the-positives-of-homeschooling.html
http://www.sonlight.com/blog/2011/10/not-negative-the-positives-of-homeschooling.html
http://www.sonlight.com/blog/2011/10/not-negative-the-positives-of-homeschooling.html
http://www.sonlight.com/blog/2011/10/not-negative-the-positives-of-homeschooling.html
http://www.sonlight.com/blog/2011/10/not-negative-the-positives-of-homeschooling.html
http://www.sonlight.com/blog/2011/10/not-negative-the-positives-of-homeschooling.html
http://www.sonlight.com/blog/2011/10/not-negative-the-positives-of-homeschooling.html
http://www.sonlight.com/blog/2011/10/not-negative-the-positives-of-homeschooling.html
http://www.sonlight.com/blog/2011/10/not-negative-the-positives-of-homeschooling.html
http://www.sonlight.com/blog/2011/10/not-negative-the-positives-of-homeschooling.html
http://www.sonlight.com/blog/2011/10/not-negative-the-positives-of-homeschooling.html

5

PUSH or PULL

 USOS API is a public API to USOS. Mobile applications may use USOS

API to get access to information handled by USOS.

 However the standard PULL method does not scale well.

 Systems like Facebook, Twitter, Flickr, Foursquare base their

notification services on a PUSH paradigm, where it is a server, not a

client which starts communication. Clients may subscribe to be

notified about the events of interest. Information providers send

notifications in real time to a designated hub, from which they are

further distributed to all subscribers.

 PUSH is not only more efficient, but also more natural for phone

owners who are used to obtain SMSs without any activity on their

side. This is the responsibility of the telecom service provider to

locate the phone with the appropriate number and deliver SMS

straight to it.

 System of notifications follows the same idea

6

Number of events

 The academic community of the University of Warsaw

consists of more than 50 thousand students and more than

3.5 thousand academic teachers.

 Grades are among the most interesting objects handled by

any SMIS.

 In the most busy month, June 2013, there were 247,685

grade changes concerning 40,248 users.

 That means that for this one particular event type the

system should be able to send to each client (mobile

application) about 250 thousand notifications concerning

about 40 thousand users in time shorter than one month.

 This is the efficiency we want to deliver

7

http://hubbubclub.org/info/who-we-are/

What hubbub has to do with that?

http://hubbubclub.org/info/who-we-are/
http://hubbubclub.org/info/who-we-are/
http://hubbubclub.org/info/who-we-are/
http://hubbubclub.org/info/who-we-are/
http://hubbubclub.org/info/who-we-are/

8

PubSubHubbub protocol

 Open protocol used by parties which want to communicate in a

publish-subscribe manner.

 In order to provide a secure path, subscribers should share a

secret with the hub, to be used by the hub to compute an HMAC

signature that will be sent to the subscriber.

 A client chooses an object he wants to observe, indicates object

attributes of interest, URL and a verification token.

 The system first verifies the subscription by making request to the

given URL, with the verification token attached. Subscription is

confirmed when the server answers properly to this request. The

purpose of this verification is to prevent DDoS attacks by making

sure that the client controls the server available under the given

URL.

9

PubSubHubbub protocol – cont.

 Whenever one of the indicated attributes changes the value, the

notification system makes HTTP POST to the given URL. The

request (in JSON format) does not contain new values of the

attributes.

 It has an extra HTTP X-Hub-Signature header with the HMAC

checksum of the request body calculated using SHA1 algorithm

with the key being the shared secret known to the hub and the

client (private key from the OAuth protocol).

 No sensitive data is sent in notifications. If the client wants to

obtain the new values, a new request should be made.

 Facebook, Flickr, Foursquare, Instagram implement real time

notifications in a similar way.

 Twitter delivers Streaming API — users connect to endpoints from

which they read potentially infinite stream of data.

10

https://code.google.com/p/pubsubhubbub/

https://code.google.com/p/pubsubhubbub/

11

USOS API

 USOS API is a standard REST-like interface to data gathered in

USOS, publicly available, well documented, with guaranteed

backward compatibility.

 Single USOS API installation consists of three functional parts:

 Web services (API methods) available for applications.

 Mini-portal for programmers, with public documentation (in English)

of all methods. This portal is also used for generating keys used to

identify applications with the server.

 Administration panel for students and academic teachers. Users have

access here to the list of applications, to which they have granted

access to their USOS data.

 API methods are gathered in modules, e.g. users, courses, credits,

exams, grades, geo, mailing, oauth, photos.

 Results of methods are delivered in XML or JSON format.

12
http://apps.usos.edu.pl/developers/api/

http://apps.usos.edu.pl/developers/api/

13

OAuth protocol in USOS API

 OAuth (Open standard for Authorization) is an open protocol for clients

(usually applications) to access resources (such as confidential data) on

behalf of a resource owner (usually end user).

 In a classical model of client-server authentication, the client uses its

credentials (username and password) to gain access to its resources

located on the server.

 In OAuth model, the client (which is not the owner of the resource, but

only acts on his behalf) requests access to the resources which are

controlled by their owner, but are located on the server. The client has

to get permission from the owner first. It is expressed in the form of an

access token. The purpose of the token is to avoid the situation when

the owner has to share his password with the client. Unlike passwords,

tokens may be issued with scope and time constraints (and cancelled at

any time).

 OAuth is used by Facebook, GitHub, Google, Microsoft, PayPal, Twitter,

Yahoo!, Flickr, Foursquare, Instagram, LinkedIn, and many others.

14

OAuth protocol in USOS API

 There is an analogy given by Eran Hammer-Lahav

http://hueniverse.com/oauth/guide/:

 Many luxury cars come with a valet key. It is a special key you give the

parking attendant and unlike your regular key, will only allow the car to

be driven a short distance while blocking access to the trunk and the

onboard cell phone. Regardless of the restrictions the valet key imposes,

the idea is very clever. You give someone limited access to your car

with a special key, while using another key to unlock everything else.

[..] The decoupling of the resource owner’s username and password from

the access token is one of the most fundamental aspects of the OAuth

architecture.

 Academic databases store private data (like citizen identity numbers,

names, birth dates etc.), confidential data (like information about

handicapped students or social aid), data of business value (like mailing

lists of students and staff members), data which is vulnerable for theft or

destruction (like grades or thesis reviews).

 USOS API implements OAuth protocol to protect the data.

http://hueniverse.com/oauth/guide/

15

Implementing notifications in USOS API

 There are two main problems to be solved when implementing the

system of notifications: how to manage subscriptions and how to

distribute notifications.

 Subscriptions are managed by USOS API, what means that the new API

module had to be designed and implemented, with methods to

subscribe/unsubscribe to particular events.

 Notifications may be distributed in two possible ways.

 They might be sent when the event occurs. This solution is simple but potentially absorbs

many resources.

 Another possibility is to queue information about events and sent notifications later,

grouping them by event type.

The second solution was chosen.

 The hub is a special daemon which has access to USOS API tables where

subscriptions and events are stored. The daemon periodically browses

the tables for new records and distributes notifications to the clients.

16

General overview of the system architecture

17

Implementing notifications in USOS API

 The newly developed module services/events contains the following

methods:

 subscribe_event — subscribe to events of a given type.

 unsubscribe — unsubscribe from events.

 subscriptions — list the consumer subscriptions.

 notifier_status — get information on the status of the notification daemon.

 Event types are paths to methods like services/grades/grade which

change data in the database.

 Client (mobile application) subscribes to a given type of events through

subscribe_event method.

 Client’s request is validated to make sure that it is in fact under control

of the server described by the URL delivered in the invocation. Providing

the validation was successful, a new subscription is created.

 USOS API stores subscriptions in the local table.

18

Implementing notifications in USOS API

 Assume that an event of the chosen type occurred.

 USOS API checks it the client is authorized to receive the notification.

 The client’s server receives an HTTP request with one or more

notifications. The request method is POST. The request body is in JSON

format

 There are two security requirements concerning the system of

notifications:

 Protecting sensitive data

 Solved by the OAuth protocol. The problem of possible leaks of

sensitive data is solved in a tricky way. Instead of sending sensitive

data the notification daemon sends only an information about the

event.

 Ensuring authenticity of notifications received by subscribers

 Solved by the PubSubHubbub protocol.

19

Test data sets Trivial Grouping Caching Direct SQL Asynch. I/O JSON Extra tuning

3 clients,

10 users,

60 events

93.2 3.3 1.8 1.6 0.64 0.59 0.56

3 clients,

100 users,

600 events

19.6 3.7 2.5 1.59 0.99 0.72

3 clients,

1 000 users,

6 000 events

189.7 30.1 18.2 9.85 5.53 2.46

3 clients,

10 000 users,

60 000 events

180.8 92.6 51.1 17.62

3 clients,

40 000 users,

250 000

events

209.7 77

Test results for various data sets and implementation

methods (times are given in seconds)

Tuning system performance

20

System architecture – summary

 A client makes subscriptions by invoking services/events/subscribe_event and

provides a web server.

 Notifications are HTTP requests to that server.

 The system consists of new methods of USOS API for handling subscriptions and the

notification daemon (which plays a role of the hub from the PubSubHubbub

protocol).

 Subscriptions are established in the context of the client, i.e. one subscription

may cover notifications on all data to which the client has access.

 Notification daemon wakes up periodically and processes events collected since

last check.

 Sensitive data are not transmitted; the notification only signals the changes and

includes information necessary to fetch them.

 Before sending notification about changes in a sensitive data of some user,

permissions have to be checked; if the client has the OAuth access token for that

user with sufficient privileges, the user can receive notification.

 HTTP requests with notifications have an additional header — X-Hub-Signature,

which allows to verify the sender.

 Types of events are paths to methods returning a single record from the database;

thanks to this, subscriber knows how to get the changed data.

21
System architecture with the algorithm performed by the notification

daemon

22

Conclusions

 We designed a system of notifications being part of USOS API.

 It is based on the PubSubHubbub protocol, which allows to notify

subscribers in real time about events originated from the student

management information system.

 It uses OAuth protocol to ensure confidentiality of data access.

 Solution is not only secure and user friendly, but also scales

well.

 New methods of USOS API and the notification daemon comprise a

basic infrastructure necessary to develop mobile applications for

interacting with the student management information system.

 These applications have yet to be designed and implemented

(work in progress).

23

Acknowledgments

This paper is based on

the Master thesis of Kamil Szarek:

Event notifications system for USOSapi users

supervised by Janina Mincer-Daszkiewicz

Programming work was done by Kamil

