
Student – Class
Assignment
Optimization
K.Ciebiera, M.Mucha

USOS

● The University Study-Oriented System is an
integrated student management information
system for handling student affairs at Polish
universities.

● Its development and deployment is
coordinated and supported financially by the
consortium of Polish higher education
institutions.

Main problems to solve

Not enough “high quality” resources:
● lecturers
● exam and course slots
● interesting courses

We (USOS authors) cannot solve these
problems.

In the press

Registration methods

1. Manual registration by dean's office.
2. Registration outside of the system.
3. Token based registration.
4. Preferences based registration.

Two-phase registration model

In phase 1 students are registered by dean's
office to courses.
Phase 2 consists of following steps:
1. Students define their preferences.
2. System is taken to read-only mode.
3. Engine performs student-class assignments.
4. Assignment results are shown to students.

Constraints

1. Each class has its own schedule and a limit
on number of students.

2. Classes are in conflict one with another if
their schedules overlap.

3. Some pairs of classes are excluded.

Students preferences

1. Number of conflicts, student may mark
some courses as not important for him.

2. Students may prioritize classes of all his
important courses. They define sequence of
subsets of all classes.

Web based-self service system.

Preferences - example

Unsuccessful solution (greedy)
for all students:

 for all ordered preferences of current student:

 if matching preference does not exceed limits:

 assign student using preference

 take next student

 register student to least crowded classes without

 breaking exclusions

Unsuccessful - monolithic app

1. Java based application
2. Automatic memory management
3. Direct connection to database
4. User friendly interface

Bugs, bugs, bugs. Hard to debug (20
instances)

Successful - application architecture

SA RDG (engine) - command line app in C++

Successful solution (SA)
assign students randomly to classes

while we still have time:

 move random student from one class to another

 if move improves global happiness (*):

 commit move

 else:

 rollback move

(*) at the beginning we accept some not improving moves

Penalty

● number of broken class exclusions (w: 4)
● number of broken class limits penalties (w:

2)
● number of all conflicts (w:1)
● sum of met students priorities (w:0.2)

Results - no. of conflicts

Results - students having conflicts

USOS - other optimizations

1. Class-course assignment
a. global penalty
b. penalty based on students ranking

2. Class exchange
a. global penalty
b. penalty based on students ranking

3. 5 minute rounds - exams registration

● Thank you!

